Two Papers Accepted at ISWC 2025

Martin Böckling, Heiko Paulheim: gpuRDF2vec -- Scalable GPU-based RDF2vec
Generating Knowledge Graph (KG) embeddings at web scale remains challenging. Among existing techniques, RDF2vec combines effectiveness with strong scalability. We present gpuRDF2vec, an open source library that harnesses modern GPUs and supports multi-node execution to accelerate every stage of the RDF2vec pipeline. Extensive experiments on both synthetically generated graphs and real-world benchmarks show that gpuRDF2vec achieves up to a substantial speedup over the currently fastest alternative, i.e., jRDF2vec. In a single-node setup, our walk-extraction phase alone outperforms pyRDF2vec, SparkKGML, and jRDF2vec by a substantial margin using random walks on large/
Antonis Klironomos, Baifan Zhou, Zhipeng Tan, Zhuoxun Zheng, Mohamed H. Gad-Elrab, Heiko Paulheim, Evgeny Kharlamov: ExeKGLib: A Platform for Machine Learning Analytics based on Knowledge Graphs
Nowadays machine learning (ML) practitioners have access to numerous ML libraries available online. Such libraries can be used to create ML pipelines that consist of a series of steps where each step may invoke up to several ML libraries that are used for various data-driven analytical tasks. Development of high-quality ML pipelines is non-trivial; it requires training, ML expertise, and careful development of each step. At the same time, domain experts in science and engineering may not possess such ML expertise and training while they are in pressing need of ML-based analytics. In this paper, we present our ExeKGLib, a Python library enhanced with a graphical interface layer that allows users with minimal ML knowledge to build ML pipelines. This is achieved by relying on knowledge graphs that encode ML knowledge in simple terms accessible to non-ML experts. ExeKGLib also allows improving the transparency and reusability of the built ML workflows and ensures that they are executable. We show the usability and usefulness of ExeKGLib by presenting real use cases.