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Lessons from an AI-Sprint: a proposal for
measuring human-AI cooperation in research
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Generative artificial intelligence is transforming the way scholars draft, revise, and publish.

Yet, academia lacks a systematic way to measure these shifts and risks relying on anecdotal

evidence in evaluating whether AI elevates or erodes scholarly standards. This Comment

draws on a pre-registered, three-day field experiment that addressed this lack of measure-

ment by pairing twenty-two early-career researchers with and without AI tools to improve

scholarly manuscripts for journal submission. However, the AI models used in the field

experiment are already outdated and outperformed by more powerful reasoning models,

situating the results as a snapshot in time. This Comment calls for recurring events with a

similar set of evaluation criteria to combine the results in a publicly available dataset.

Monitoring the quality of researcher-AI collaboration is necessary if academia wants to keep

track of AI’s rapid impact on research practice.
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Introduction

How can the research community evaluate the impact of
increasingly powerful AI models on scholarly labor? The
rapid evolution of artificial intelligence presents a chal-

lenge to the academic community’s ability to understand and
adapt to AI’s influence. In September 2024, the University of
Mannheim and Springer Nature jointly organized a three-day-
long “AI-Sprint” that paired early-career scholars with AI tools to
evaluate their impact on scholarly writing. The participants’ goal
was to improve their drafts, with the opportunity to submit them
to this journal. The AI-Sprint demonstrated how a partnership
between a publisher and a university offers possibilities to eval-
uate emerging AI tools. We suggest repeating and coordinating
similar events across institutions to continuously track the impact
of AI on academic writing and publishing.

AI tools are already part of the daily life of universities. Their
potential and promise lie in the benefits they offer to various
aspects of academic research, such as assisting with writing,
analysis, and discovery (Meyer et al., 2023; Salvagno et al., 2023).
Indeed, AI proves beneficial in tasks relevant to researchers, such
as improving writing, developing new ideas, and analyzing data
(e.g., Dell’Acqua et al., 2023; Ratkovic et al., 2025). However,
recent results demonstrate limitations of AI models. Social sci-
entists tasked with replicating previous work do not perform
better when paired with AI than researchers without such support
(Brodeur et al., 2025).

While current research provides snapshots, AI’s rapid devel-
opment limits how contributions reflect AI’s ability to aid
researchers, requiring recurring measurements. In this Comment,
we outline practical steps for replicating AI-Sprints across insti-
tutions and discuss considerations for effectively monitoring AI’s
evolving academic impact.

Understanding AI’s scholarly impact: the Mannheim AI-
Sprint
For a weekend, twenty-two social scientists were randomly
assigned to either an AI-assisted group or a control group with no
access to AI. The goal of the experiment was to determine whe-
ther AI assistance enhances the manuscript quality of early-career
researchers. In the aftermath, both groups had the opportunity to
submit their papers to a dedicated peer reviewed journal Col-
lection, of which this Comment also forms a part.

The full results from this experiment, which are presented
separately (Ratkovic et al., 2025), indicate benefits for the group
using AI tools, improving the clarity and coherence of their
manuscripts. The ratings by five faculty members show no dif-
ferences in the remaining dimensions (depth of analysis, literature
integration, methodological rigor, and originality). Analysis of
open-ended responses in additionally administered self-reflection
surveys of the participants using LIWC (Pennebaker et al., 2015)
suggests a greater momentum in drafting for the treated group, as
evidenced by an increase in vocabulary related to action and
temporality. An evaluation of manuscripts by AI (Sakana AI)
mirrors human ratings, with non-significant differences in clarity
and coherence. Taken together, working with AI improves the
manuscripts of early-career researchers.

However, our experiment, as well as similar efforts, only pro-
vides one measurement, a snapshot of reality. Because every
causal estimate is tethered to the moment it was measured, its
explanatory power fades as the world changes (Munger,
2019, 2023). This is particularly relevant for the rapid develop-
ment of increasingly powerful AI models. For instance, the
company behind ChatGPT introduced a new generation of
models capable of reasoning a week prior to the AI-Sprint
(OpenAI, 2024). By employing greater computing power for

answer generation and systematically evaluating diverse reason-
ing paths, these models outperform conventional large language
models across most tasks (OpenAI, 2024). These reasoning
models are now widely available and more powerful, having
saturated multiple AI benchmarks (e.g., Kavukcuoglu, 2025;
OpenAI, 2025). Consequently, the insights from our 2024
experiment are best interpreted as historically situated evidence
rather than a timeless verdict.

We propose repeating similar events across sites and pooling
the data to arrive at a continuous and updated assessment of how
scholars adopt AI. Without such monitoring, researchers, uni-
versities, and publishers are forced to rely on anecdotal evidence
when discussing the relevance of AI for academia. Although this
might be slightly more comfortable, implementing systematic
approaches is not much more difficult than avoiding them, and
doing so will yield substantial benefits.

The AI-Sprint offers an example of how to replicate the same
approach with modest resources. Two seminar rooms, a small
pool of AI-usage credits, and basic travel stipends cover the
essentials, while light refreshments and two daily exercise breaks
sustain focus. Because the format is lightweight, any university
can run a similar AI-Sprint.

The Mannheim AI-Sprint comprised the following steps: first,
the group of accepted participants received an introduction to
two AI tools. Second, randomization assigned participants to
either an AI-assisted (treatment) group or a control group
without access to AI. Third, both groups’ objective was to advance
their manuscripts toward journal submission over the weekend.
The treatment group was free to use their AI access for sentence
polishing, outline expansion, or drafting entire sections. They
remained solely responsible for every word produced. After the
AI-Sprint, all participants received access to the AI tools and
could submit their work to this journal until the end of January
2025. To track how participants experienced the sprint, we sur-
veyed them six times: once before the event, four times during the
weekend, and once after the event. Faculty members evaluated the
participants’ manuscripts in the versions prior to the workshop
and at the end of the weekend. Overall, our design captured both
the objective shifts in manuscript quality and the participants’
subjective experiences of AI-assisted writing.

Hosting a similar event benefits all stakeholders beyond the
immediate publishing opportunity for participants. Publishers
receive early detection of how AI usage affects the quality of
research. Likewise, universities can identify areas in which AI will
aid human work and which domains will remain human-
centered. Further, they can adapt courses and test formats for
undergraduates and keep regulations for ethical human-machine
interactions up to date. The benefits for researchers themselves
are two-fold. Researchers participating in an AI-Sprint can utilize
the latest tools in focused environments to transform a draft into
a publishable manuscript. The benefits for researchers extend
beyond the participants in AI-Sprints. Everyone can utilize the
resulting metrics to identify areas where AI support is effective
and areas where a human-in-the-loop approach remains
irreplaceable.

Examining the papers accepted to this Collection, our AI-
Sprint demonstrates the success of this concept: three of the
twenty-two participants have so far successfully passed the peer-
review process and had their work published. These publications
originate from various subfields in the social sciences. One con-
tribution provides quasi-experimental evidence for the “rally
around the flag effect” (Mueller, 1970), examining whether a
crisis increases support for governmental actors (Muhammad and
Undzėnas, 2025). Using data from the 10th wave of the European
Social Survey, they find an increase in public support for the

COMMENT HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-025-06110-1

2 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |         (2025) 12:1707 | https://doi.org/10.1057/s41599-025-06110-1



European Union right after Russia’s invasion of Ukraine. Warode
(2025) introduces a model to analyze how left- and right-leaning
German political candidates associate different meanings with the
terms “left” and “right”. By comparing the semantic embeddings
of answers to open-ended survey questions from political can-
didates with their self-placements, Warode detects positive con-
notations associated with a candidate’s ideology and negative
connotations associated with the opposing ideology. The third
contribution by Gelvez (2025) aggregates multiple machine-
learning models into a super-learner (Van Der Laan et al., 2007)
to predict police and military violence in Colombia and Mexico.
He achieves over 92% predictive accuracy, finding that geographic
factors are the most influential predictors in Colombia, whereas
socioeconomic variables are the most important in Mexico.
Together, these publications demonstrate that scholars employing
a range of methodological approaches and research interests can
effectively utilize the AI-Sprint concept to produce high-quality,
peer-reviewed research.

Monitoring AI’s impact. If other institutions repeat similar AI-
Sprints with a shared evaluation rubric, snapshots from Man-
nheim, Melbourne, or Mexico City can be merged into one
dataset reflecting how scholars harness evolving AI models. The
ambition to systematically track AI’s evolving impact through
replication of experiments finds a precedent in the Metaketa
Initiative. This initiative supports coordinated field experiments
to overcome issues such as selective reporting or heterogeneous
designs (Dunning et al., 2019). To do so, researchers agree to
adopt common research questions and harmonize measurements
(Dunning et al., 2019), a coordinated effort that hinges on a set of
design choices.

To motivate scholars to participate in AI-Sprints, the task for
participating scholars must remain authentic, such as advancing
to a submission-ready research manuscript. AI can contribute to
different aspects of the research process. Therefore, it is not
necessary to narrow the focus of a sprint to tackle just one of
these and future AI-Sprints may test quite different ways for AI to
support article writing. Further, possibilities for publishing work
in relevant journals appear to be a viable incentive.

Effective measurement demands flexible monitoring that
accommodates disciplinary priorities and varied epistemologies.
While this necessitates field-specific adjustments in evaluation,
the core underlying question of whether researchers can use AI to
produce work ready for publication more efficiently serves as a
common baseline. Physicists might ensure precision in complex
model descriptions and data presentation, while economists could
verify the appropriate use of statistical methods and the
interpretation of their results. Scholars in the humanities might
focus more on AI’s influence on theoretical framing and quality
of argumentation. Combining the field-specific requirements
while keeping central evaluations of manuscripts consistent,
various subfields can contribute data. Together, this would result
in insights relevant to specific fields while contributing to a
broader understanding of AI’s impact.

The monitoring should also reflect how AI affects researchers
differently based on their proficiency in their native language, as
English dominates academic publishing. Non-native English speak-
ers face more linguistic hurdles (Amano et al., 2023; Clavero, 2010).
With AI tools becoming increasingly capable of refining language,
this may enable non-native speakers to articulate and refine their
core scientific ideas more easily, thereby lessening the cognitive load
of writing in a foreign language (Berdejo-Espinola and Amano,
2023). Criteria such as clarity and coherence of the writing can track
how AI assistance influences the effective communication of
complex research insights for both native and non-native speakers.

Furthermore, the storage of Sprint data should enable anyone
to identify long-term patterns, work with the manuscripts
without compromising author anonymity, and apply new scoring
methods in the future. This could be achieved by organizations
jointly running an archive, assigning each sprint output a
permanent identifier, and publishing dashboards that show how
the results change over time. This strategy aligns with the FAIR
Guiding Principles for scientific data management, which
emphasize that research outputs should be findable, accessible,
interoperable, and reusable (Wilkinson et al., 2016).

Some might worry that proposed AI-Sprints trivialize the
process of academic writing, collapsing research into a race, and
encouraging authors to optimize for surface polish over sustained
thought. These concerns continue to demonstrate the need for
these sprints: Will benefits of human-researcher interaction
remain limited to superficial dimensions of academic work, even
as these models continue to improve? Are there necessary
conditions in the collaboration to improve the depth of
arguments and the originality of the work? Let us look at it
differently: Just as citation indices quantified influence and
plagiarism detectors formalized originality checks, a growing
record of AI‑assisted drafts can anchor debates on AI in data. We
encourage other scholars and institutions to join the discussion
about design choices and possible limitations of continuously
monitoring the AI-researcher duet.

Equally important to measuring AI’s impact is the transparent
disclosure of its use in the research process. As AI tools become
more deeply embedded in scholarly workflows—from idea
generation to manuscript polishing—the academic community
must establish clear and consistent standards for reporting AI
involvement. Without such transparency, the integrity of peer
review and the attribution of intellectual labor may be
compromised. Researchers, reviewers, and readers alike benefit
from knowing whether and how AI contributed to a given work.
This is especially relevant as AI tools increasingly influence not
just language but also structure, argumentation, and even data
interpretation.

Calls for unified disclosure standards, such as those cham-
pioned by the STM Association, highlight the urgency of this
issue (STM Association Task and Finish Group, 2025). Aligning
AI-Sprint protocols with these emerging frameworks would
ensure that manuscripts reflect not only the quality of human-AI
collaboration but also the ethical standards of academic publish-
ing. Transparent labeling of AI contributions—whether in
acknowledgments, metadata, or dedicated disclosure sections—
can help distinguish between human insight and machine
assistance. This clarity is essential for future research on the
evolving human-AI dynamic and for maintaining trust in
scholarly communication.

Conclusion
The rapid and unceasing evolution of artificial intelligence pre-
sents a challenge to the academic community’s ability to under-
stand and adapt to its influence on scholarly work. This
Comment argues that isolated or infrequent assessments are
insufficient. Instead, continuously updated monitoring, created
through a network of recurring, harmonized “AI-Sprints,” would
benefit scholars, publishers, and other academic institutions.

Realizing such an ambitious yet necessary initiative requires a
collaborative effort. To catalyze this effort, the academic com-
munity should consider several practical next steps: other insti-
tutions could pilot their AI-Sprints, adapting to their local
contexts and disciplinary needs. Furthermore, monitoring mul-
tiple AI-Sprints will empower academia to not only react to
technological advancements but also shape its future relationship
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with AI, ensuring that these tools augment scholarly inquiry
ethically. By institutionalizing AI‑Sprints, academia can adapt its
understanding of and decide upon what counts as authorship,
originality, and rigor in an era of synthetic eloquence.
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