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Models of ecological inference (EI) have to rely on crucial assumptions about the individual-

level data-generating process, which cannot be tested because of the unavailability of these

data. However, these assumptions may be violated by the unknown data and this may lead

to serious bias of estimates and predictions. The amount of bias, however, cannot be

assessed without information that is unavailable in typical applications of EI. We therefore

construct a model that at least approximately accounts for the additional, nonsampling error

that may result from possible bias incurred by an EI procedure, a model that builds on the

Principle of Maximum Entropy. By means of a systematic simulation experiment, we exam-

ine the performance of prediction intervals based on this second-stage Maximum Entropy

model. The results of this simulation study suggest that these prediction intervals are at least

approximately correct if all possible configurations of the unknown data are taken into

account. Finally, we apply our method to a real-world example, where we actually know

the true values and are able to assess the performance of our method: the prediction of

district-level percentages of split-ticket voting in the 1996 General Election of New Zealand.

It turns out that in 95.5% of the New Zealand voting districts, the actual percentage of split-

ticket votes lies inside the 95% prediction intervals constructed by our method.

1 Introduction

Many students and practitioners of social science have remained skeptical about the
feasibility of sound ecological inference (EI). To some, the terms ‘‘ecological inference’’
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and ‘‘ecological fallacy’’ appear almost synonymous: They doubt whether it will be pos-
sible at all to draw any conclusions about the behavior of individuals from aggregate data.
There seem to be good reasons for such skepticism: EI has to rely on certain assumptions
about the data-generating process at the level of individuals that cannot directly be tested,
simply because the data on which such tests could be based are unavailable to begin with.
The burden of assumptions becomes especially visible in a recent survey of Bayesian
approaches to EI for 2 � 2 tables given by Wakefield (2004), which shows that even
Markov chain Monte Carlo (MCMC) approaches are faced with this indeterminacy. Wake-
field considers a total of 13 different variants of prior distributions for use in MCMC
analysis of 2 � 2 tables including King’s original truncated normal prior, beta exponential,
and Student logistic gamma compound prior distributions and compares them with respect
to prediction bias for King’s (1997) Louisiana party registration data. Although there is
one prior distribution that performs best in this application, one may still ask whether this
result can be generalized to all possible EI applications to 2 � 2 tables. The question
remains, as Fienberg and Robert aptly remark in their comments to Wakefield’s review, ‘‘to
what extent can we really distinguish between the fit of different models, hierarchical or
otherwise, when only aggregate data are available?’’ (Fienberg and Robert 2004, 432).

Nonetheless, without certain restrictive assumptions about the process generating the
unknown data, it is impossible to obtain any estimates for an EI problem, however pre-
liminary these estimates may be. It should be noted that the challenge of EI is only a special
case of the wider class of ill-posed inverse problems (King 1997). The task of EI is solving
a problem that is inverse insofar as only a set of summaries of the data of interest are given
and ill posed insofar as the information given by these summaries is not sufficient to
identify a solution. Problems of this kind abound in the technical and scientific literature
and numerous approaches to their solution have been proposed (see e.g., Groetsch 1993).
Therefore, we think that a general rejection of EI procedures would be premature. Al-
though the assumptions inherent in an EI procedure cannot be tested by means of statistical
techniques, it is still possible to delimit the potential error that is associated with predic-
tions from such a procedure. Constructing bounds to this potential error is the aim of the
present paper. We derive a method to construct ‘‘robust’’ prediction intervals, that is,
intervals that contain the true values of the unknown data with (at least approximately)
known probability. Further, we assess the performance of these prediction intervals by
means of simulation and a real-world example, the reconstruction of split-ticket votes in
the 1996 General Election of New Zealand. As point of departure, we take an EI procedure
recently presented in this journal, the entropy-maximizing approach of Johnston and Pattie
(2000). When recast into a probability model, the Johnston-Pattie model imposes rela-
tively mild and clearly structured restrictions on the unknown data-generating process and
thus suits well the exploration of the consequences of model departures. As it will turn out,
both in the simulation study and in the application to ticket splitting in New Zealand, the
prediction intervals that we construct have a coverage that is almost identical to their
nominal level.

The paper is organized as follows: In Section 2, we explain the fundamental dilemma of
EI, which results from the necessity of EI procedures that employ certain restrictive
assumptions that cannot be tested without the aid of the very data which are unavailable
in a typical EI application. In Section 3, we propose a second-stage correction of the error
distribution of EI estimates based on the Principle of Maximum Entropy and report the
results of a simulation study to assess the performance of the proposed method. In Section
4, we discuss how this method can be adapted to cases where some of the data on which EI
is based do not come from population-level aggregates but from a survey sample. In
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Section 5, we illustrate our method with its application to split-ticket voting in the 1996
General Election of New Zealand. Section 6 discusses the limits of our proposed method,
whereas Section 7 summarizes our results.1

2 A Basic Dilemma of EI

The situation of EI can be compared to reconstructing the ‘‘inner workings’’ of a ‘‘black
box.’’ These inner workings may be, for example, the numbers xijk of members from
various ethnic groups (i 5 1, . . ., I) who do or do not turn out to vote ( j 5 1, . . ., J) in
voting districts (k 5 1, . . ., K) or the probabilities Pr(Xijk 5 xijk) in which these counts may
occur. If the total sum of the counts is n, for example, if the total population of eligible
voters is n, then the total number of possible configurations of counts xijk that sum to n can

be expressed as the binomial coefficient nþ IJK � 1

IJK � 1

� �
: In typical instances of EI, this is

a vast number: Even in a country with only 1 million (5n) voters and three (5I) ethnic
groups, whose members may or may not turn out to vote (J 5 2) in one of 100 (5K) voting
districts, there are

n þ IJK � 1
IJK � 1

� �
5

106 þ 599
599

� �
’ 102189 ð1Þ

possible ways to arrange the voters into the black box.
In the absence of any information about the marginal sums n:jk 5

P
i xijk; ni:k 5

P
j xijk;

or nij: 5
P

k xijk, that is, if only the total sum n of the counts xijk is known and if one has to
make a point prediction about what configuration of counts is present inside the black box,

it seems that one cannot do better than pick any of the nþ IJK � 1

IJK � 1

� �
possible configura-

tions at random.2 Such a random pick can be represented by a Uniform distribution on all
possible configurations of counts 5(xijk) in the (I � J � K)-array that have a total sum of

n. The probability of any specific configuration of being chosen then is 1

�
nþ IJK � 1

IJK � 1

� �
:

Also, the probability of hitting the true configuration of counts
*
5ðx*

ijkÞ by accident is

also 1

�
nþ IJK � 1

IJK � 1

� �
: Thus, one could also think of this true configuration as the outcome

of a random variable 5(Xijk) that has arrays 5(xijk) as values and has a Uniform
distribution on its values.

Now, information about marginal sums of the cell counts, for example, the number of
members of ethnic groups within each voting district, can vastly reduce the number of
possible cell counts one has to consider. If we consider the case (for reasons of simplicity if
not of plausibility) that the observed turnout rate in all voting districts is 50%, then one has

1An appendix, available online on the Political Analysis Web site, contains supplemental information: some
background on maximum entropy distributions, properties of the Dirichlet and Dirichlet-multinomial distribu-
tions relevant for the argument of our paper, details on the computation of Beta-binomial prediction intervals,
and some details about two nonparametric alternatives to the method proposed in our paper. The Political
Analysis Web site also contains source code in R and C as well as data suitable for the replication of the analyses
presented here.

2A note on notation: We abbreviate
PI

i51; etc., as
P

i and
PI

i51

PJ
j51

PK
k51 as

P
i;j;k if the summation limits are

understood.
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only to consider, given a combination of voting district k and turnout status j, the number
of possible triples of numbers that sum to n/JK 5 106/200, that is,

n=ðJKÞ þ J � 1
J � 1

� �
5

106=200 þ 3 � 1
3 � 1

� �
’ 107:1; ð2Þ

a number that is several orders of magnitude smaller than the number of possible config-
urations if no information about the marginal counts was available. This suggests that
predictions about the unknown cell counts that take into account the marginal tables can
have a greatly improved performance as compared to predictions that do not. EI methods
can be considered as attempts to make such improved predictions. Yet, these methods are
plagued by a serious problem, which we will expose in the following.

Statistical inference usually is made with the intention to describe a population based
on a sample. For example, one may try to identify a model of voting behavior that connects
voters’ decisions to their own and the candidates’ policy positions. If a correctly specified
model is found, it can be used to make out-of-sample predictions, which may be pre-
dictions about future states of affairs or contrafactual states of affairs. One can also find
both types of usage of results of EI. As an example of the first type of usage, Burden and
Kimball (1998) try to find how much and why American voters engage in split-ticket
voting between Presidential and Congress elections based on aggregated Presidential and
Congressional votes for American voting districts. An example of the other type of usage
is predicting the effects of changing the boundaries of voting districts on the representation
of racial groups in these districts and on the chances of Democratic and Republican
candidates in these rearranged districts (Cirincione, Darling, and O’Rourke 2000). As
with statistical inference, both usages of EI need correctly specified models that describe
the population. In contrast to statistical inference, EI is confronted with two problems that
together pose a dilemma. The first problem is that of modeling indeterminacy: If only
aggregates of the variables of interest are observed, there will always be more than one
model of an interrelation between these variables that even fits perfectly to the observed
aggregates. The second problem is that of inferential indeterminacy: If one arrives at
identifying a model describing the interrelation of the variables of interest, this model
will entail certain restrictive assumptions about the population, which cannot be tested
based on aggregate data alone, which usually are the only data available. Hence the
dilemma: If the first problem is solved, the second one is inevitably encountered. If one
tries to avoid the second problem, one cannot solve the first one.

The challenge of the first problem lies in finding assumptions suitably restrictive for
model identification. The criteria for suitability may vary with the application, but in most
cases one will use assumptions that are plausible on the one hand and convenient on the
other insofar as they lead to simple models for which estimation is feasible. However,
plausibility and simplicity may conflict.

Consider the case in which someone has aggregate data on turnout and the proportion of
African-Americans at the level of voting districts and wants to find out whether African-
Americans differ from other citizens with respect to turnout. In this case, a model that
presupposes that in each voting district turnout and race are conditionally independent will
perfectly fit to the aggregate data and thus cannot be improved based on these data alone:
Let n1�k denote the number of African-Americans eligible to vote in district k, n2�k the
number of other citizens eligible to vote, n�1k the number of citizens eligible who actually
turn out to vote, and n�2k the number of citizens eligible who do not turn out to vote in
district k. Further, let pijjk be the probability that an eligible citizen in district k is an
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African-American (i 5 1) and turns out to vote (j 5 1), is an African-American (i 5 1) and
does not turn out to vote (j 5 2), is not an African-American (i 5 2) and turns out to vote
(j 5 1), or is not an African-American (i 5 2) and does not out to vote (j 5 1) and let xijk be
the actual number of African-Americans/others who turn out/do not turn out to vote in
district k. We thus have ni�k 5

P
j xijk and n�jk 5

P
i xijk:

Then, a model that states

pijjk 5 pi�jkp�jjk ð3Þ

can be fitted to the aggregate data using the maximum likelihood estimates

p̂ijjk 5 p̂i�jkp̂�jjk 5
ni�kP
i ni�k

n�jkP
j n�jk

: ð4Þ

This model implies that within each race group i in district k, the probability to turn out to
vote is equal:

pjjik 5
pijjkP
j pijjk

5
pi�jkp�jjkP
j pi�jkp�jjk

5
p�jjkP
j p�jjk

; ð5Þ

that is, turnout is unrelated to race. Of course, such a model seems implausible given the
fact that survey data indicate that turnout and race are statistically related (e.g., Abramson
and Claggett 1984). But this independence assumption cannot be tested based on the
available aggregate data alone. On the other hand, any model that poses that race and
turnout to be related, that is, p̂*

ijjk 5 cijp̂i�jkp̂�jjk with cij 6¼ 1,
P

i cijp̂ijjk 5 p̂i�jk; andP
i cijp̂ijjk 5 p̂�jjk; is empirically indistinguishable from the independence model. Thus, it

seems that based on aggregate data alone, one cannot decide whether race and turnout are
related or not.

Ecological regression (Goodman 1953, 1959) aims to overcome this problem by using
a model that is in some ways more but in other ways less restrictive. In the case of race and
turnout, it requires that the conditional probabilities of turnout are different across race
groups but are the same in all voting districts, that is, pijjk 5 pjjip�jjk. Some refined eco-
logical regression models even relax this assumption; they allow the conditional proba-
bility to vary across districts according to some known properties of the districts, that is,
pijjk 5 pjjikpi�jk and pjjik 5 f(bij0 þ bij1z1k þ � � � þ bijDzDk), where z1k, . . ., zDk are the
properties of the districts and b1, . . ., bD are the parameters to be estimated. In contrast to
the conditional independence model discussed above, ecological regression models can,
to some degree, empirically be tested. With maximum likelihood estimates
p̂jjik 5 f ðb̂ij0 þ b̂ij1z1k þ � � � þ b̂ijDzDkÞ and p̂i:jk 5 ni�k=

P
i ni�k; it is still logically possible

that predicted turnout numbers per district n̂�jk 5
P

j p̂jjikni�k differ from actually observed
turnout numbers n�jk. Thus, in case of a poor fit between observed and predicted rates of
eligible citizens who turn out in each of the districts (indicated by k), one may conclude
that the ecological regression model is wrong and some of its assumptions have to be
lifted. To account for departures of observed counts in a marginal table, such as the
observed turnout per voting district, from predicted turnout, various authors extend this
ecological regression by a random component: In this extended ecological regression
model, conditional probabilities pjjik are not fixed parameters but outcomes of a random
variable. King proposes that these conditional probabilities have a truncated normal
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distribution. Brown and Payne (1986) and Rosen et al. (2001) use the more natural
assumption that the conditional probabilities have a Dirichlet distribution with mean

EðpjjikÞ : 5pjjik 5
expðbij0 þ bij1z1k þ � � � þ bijDzDkÞP
s expðbis0 þ bis1z1k þ � � � þ bisDzDkÞ

ð6Þ

and precision parameter h.
As Goodman (1953) notes, ecological regression models are suitable only if it is

reasonable to assume that there is a causal relation between the properties corresponding
to the marginal tables. But based on the marginal tables alone, that is, the district-level
aggregates, it is possible neither to establish such a causal relation nor to disprove it: As
just noted, in ecological regression models there may be a lack of fit between observed and
predicted counts in the marginal table of turnout per district. The independence model (3)
will thus almost always seem superior to any ecological regression model. But again, the
fact that the marginal tables can perfectly be fitted by the independence model does not
imply that, for example, turnout and race are unrelated since there are infinitely many
models that pose a relation between race and turnout which may also perfectly fit to the
marginal tables.

Statistical relations between variables represented by the observed marginal tables are
often suggested by survey samples. For example, there is evidence from election studies
(e.g., Abramson and Claggett 1984) that there is a clear statistical association between race
and turnout. Therefore, it is worthwhile to combine evidence from aggregate data with
evidence from survey data. An EI model that allows for this is the Entropy-Maximizing
model proposed by Johnston and Pattie (2000) in an earlier issue of this journal. In contrast
to the models just discussed, Johnston and Pattie aim to directly make predictions about
the unknown counts xijk without the need of any statistical model. They show that a model
of cell counts that are the most likely subject to the constraintsX

j

xijk 5 ni�k;
X

i

xijk 5 n�jk; and
X

k

xijk 5 n
mij

m
ð7Þ

has the log-linear form

logx̃ijk 5aij þ bik þ cjk þ s: ð8Þ

They also show that its parameters can be estimated by an iterative proportional scaling
procedure.

Although Johnston and Pattie (2000, 337) state that their proposed procedure is ‘‘math-
ematical rather than statistical’’ and that therefore ‘‘no error terms’’ are attached to the
predicted cell counts, this is not the case: Readers familiar with log-linear contingency
table analysis (Fienberg, Holland, and Bishop 1977; King 1998) will realize that the
Johnston-Pattie model is actually a log-linear model for counts without three-way inter-
actions. However, the correct form of this model is

loglijk 5 aij þ bik þ cjk þ s; ð9Þ

where lijk is the mean of a Poisson distribution, that is, the counts may indeed vary around
this mean. The iterative scaling algorithm, which Johnston and Pattie propose, is the one
usually employed to find maximum likelihood estimates for such log-linear models. That
is, the ‘‘maximum likelihood solution’’ of Johnston and Pattie (2000, 335) is in fact the
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maximum likelihood estimates of the means of Poisson distributions that have the struc-
ture of equation (9). If the sum

P
i;j;k xijk 5

P
i;j;k lijk is known in advance as n, which is

usually the case in contingency table analysis and in EI, the distribution of the cell counts
can also be modeled as a multinomial distribution with cell probabilities

pijk 5
expðaij þ bik þ cjkÞP

r;s;t expðars þ brt þ cstÞ
: ð10Þ

Good (1963) has shown that finding the multinomial distribution that maximizes the
entropy �

P
i;j;k pijklnpijk subject to the constraintsX

j

pijk 5
ni�k
n
;
X

i

pijk 5
n�jk
n
; and

X
k

pijk 5
mij

m
ð11Þ

leads to this model,3 which requires the absence of three-way interactions among the cell
probabilities pijk. The absence of three-way interactions among the cell probabilities pijk

implies that the odds ratios pi1j1k=pi1j2k

� �
= pi2j1k=pi2j1k

� �
are equal for all k. This imposes

milder restrictions on the cell probabilities than the independence model or a ecological
regression model without covariates since constant odds ratios still allow for variation of
the conditional probabilities pjjik.

More recently, Judge, Miller, and Cho (2004) have developed an EI model based on
information theoretic considerations, along similar lines as Good (1963) and Johnston and
Pattie (2000). In contrast to these, they construct a model of the conditional cell proba-
bilities pjjik, which requires information only about two of the three marginal tables,
similarly to ecological regression and the conditional independence model.

The restrictions imposed by the various models so far discussed in this section can be
compared easily by bringing the model specifications in logit form: For the independence
model, we have

pijk 5
expðbik þ cjkÞP
r;s;t expðbrt þ cstÞ

with expðbikÞ} ni�k and expðcjkÞ} n�jk; ð12Þ

for the ecological regression model (without district-level covariates), we have

pijk 5
expðaij þ cjkÞP

r;s;t expðars þ cstÞ
with pjji 5

expðaijÞP
s expðaisÞ

and expðcjkÞ} n�jk; ð13Þ

whereas for the Johnston-Pattie multinomial model, we have

pijk 5
expðaij þ bik þ cjkÞP

r;s;t expðars þ brt þ cstÞ
: ð14Þ

All these are special submodels of the saturated model

pijk 5
expðaij þ bik þ cjk þ dijkÞP

r;s;t expðars þ brt þ cst þ drstÞ
; ð15Þ

3More on the application of information theoretic concepts to contingency table analysis and to statistics in
general can be found in Kullback (1959). The argumentation of Johnston and Pattie (2000), however, follows
a nonprobabilistic interpretation of entropy mentioned by Jaynes (1968).
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which does not pose any restrictions on the structure of the cell probabilities. The
complete-data log-likelihood of this model is

‘5
X
i;j;k

xijklogpijk 5
X

i;j

nij�aij þ
X

i;k

ni�kbik þ
X

j;k

n�jkcjk þ
X
i;j;k

xijkdijk

� nlog
X
i;j;k

expðaij þ bik þ cjk þ dijkÞ
 !

: ð16Þ

The implications of this expansion of the complete-data log-likelihood are quite ambiv-
alent: If, for example, the assumptions inherent in the independence model apply, that is,
aij 5 0 and dijk 5 0 for all i, j, and k, the complete-data log-likelihood depends only on the
observed aggregates ni�k and nj�k and the parameters of the independence model can be
estimated by direct maximum likelihood. Also, if the assumptions of the Johnston-Pattie
model apply and odds ratios are equal in all districts, that is, the three-way interaction
parameters dijk are zero for all i, j, and k, the complete-data log-likelihood depends only on
the aggregates nij�, ni�k, and nj�k. No such conclusion can be drawn with respect to ecolog-
ical regression: Ecological regression models are used if the aggregate table nij� is not
available. However, ecological regression models set parameters bi�k and dijk to zero but
not aij. Therefore, the complete-data log-likelihood for ecological regression is not a
special case of equation (16), but still it requires assumptions that are untestable without
access to the complete array of counts xijk. Thus, any of the models so far discussed
requires assumptions that can be tested only if the complete data xijk are available. In EI
problems, however, they are not.

This problem, which may be called inferential indeterminacy, is much more serious
than the fact that distributional assumptions of, for example, ecological regression models
of King (King 1997; King, Rosen, and Tanner 1999; Rosen et al. 2001) or Brown and
Payne (1986) cannot be checked or that under certain circumstances an ecological re-
gression model like King’s may be susceptible to ‘‘aggregation bias’’ (Openshaw and
Taylor 1979, 1981; Cho 1998; Steel, Beh, and Chambers 2004). For example, one may
want to make predictions about the number of African-Americans who will turn out to vote
in a specific voting district. If one uses one of the models for EI discussed above and the
assumptions inherent in this model do not hold, the predictions will be systematically
biased, irrespective of the specific estimation procedure one uses: Suppose, for example,
that in a specific application of EI, the complete data are generated from a multinomial
distribution with cell probabilities p*

ijk as in equation (15) and all structural parameters a*
ij;

b*
ik; c*

jk; and d*
ijk are nonzero. Suppose further that one uses, for example, a procedure based

on the Johnston-Pattie model (8) for EI. If n approaches infinity, the cell proportions xijk/n
will converge to p*ijk and the proportions nij�/n, ni�k/n, and n�jk/n in the marginal tables will
converge to p*ij� 5

P
k p*ijk; p*i�k 5

P
j p*ijk; and p*�jk 5

P
i p*ijk; respectively. Further, the

parameters of equation (8) will converge to values ãij; b̃ik; and c̃jk that maximize the
scaled expected log-likelihood

n�1‘̃5
X
i;j;k

p*
ijklogp̃ijk 5

X
i;j;k

p*
ijklog

expðãij þ b̃ik þ c̃jkÞP
r;s;t expðãrs þ b̃rt þ c̃stÞ

 !

5
X

i;j

p*
ij�ãij þ

X
i;k

p*
i�kb̃ik þ

X
j;k

p*�jkc̃jk � log
X
i;j;k

expðãij þ b̃ik þ c̃jkÞ
 !

:

ð17Þ
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Now even if ãij; b̃ik; and c̃jk are equal or very close to the corresponding parameters a*
ij;

b*
ik; and c*

jk; p̃ijk and p*
ijk will in general be different because of the nonzero d*

ijk: Conse-
quently, estimates of cell probabilities based on the Johnston-Pattie model will have
asymptotic bias p̃ijk � p*

ijk and thus are not consistent. However, in order to obtain an
estimate of this bias, one will need an estimate of d*

ijk; which is unavailable because only
the marginal tables are known.

This is what makes the dilemma posed at the beginning of this section so serious:
Without making certain identifying assumptions, one will not arrive, for example, at
a prediction about the number of African-Americans who turn out to vote at all, apart
from a random guess. The identifying assumptions, however, have crucial behavioral
implications and if these assumptions are wrong, one will incur biased predictions. But
these assumptions cannot be tested without access to the complete data, which are un-
available to begin with. Therefore, in any specific instance, one will not know how large
this bias actually is.

3 Accounting for Inferential Uncertainty: A Maximum Entropy Approach

Estimating cell probabilities with the help of one of the models discussed in the previous
section exhausts the resources for statistical inference. The models used for estimating the
cell probabilities all employ certain restrictive assumptions that are necessary for the
identification of cell probability estimates. Yet, as long as one is faced with the task of
EI, these assumptions cannot be tested. They could be tested as a statistical hypothesis
only if the complete data were available. But then, the problem no longer would be one of
EI. This dilemma seems to sustain a skepticism with regard to the validity of EI. However,
we would argue that a healthy amount of skepticism does not force us to give up the
attempt at EI altogether. Doing so would mean ignoring the information contained in the
marginal tables; it would mean throwing out the baby with the bathwater. On the other
hand, it is clear that one should not put the same confidence in predictions from an EI
model as one would in predictions from a well-tested statistical model.

In the present section, we propose a model that allows taking into account the
uncertainty associated with estimates obtained from an EI. Since the resources for
statistical inference are already exhausted, the model we propose cannot be justified
in terms of theoretical statistics. All we can do is to appeal to some general principles
that have some plausibility. The principle on which our proposition is based is the
Principle of Maximum Entropy, which is a generalization of the (in)famous Laplace’s
Principle of Indifference. Before we present our proposed model, we need to explain
what the Principle of Maximum Entropy entails and in what perspective we hold it to be
plausible.

Laplace’s Principle of Indifference, of which the Principle of Maximum Entropy is
a generalization (Uffink 1995), postulates that one should assign to each elementary out-
come fx1g, . . ., fxng of a probability experiment, in absence of any prior information, the
same probability 1/n. For example, if the experiment is throwing a dice, one should assign
to the outcome of each number one, two, three, four, five, or six the same probability 1/6.

The Principle of Maximum Entropy generalizes this principle to cases where some prior
information of the probability distribution in question is available and where the probability
distribution may be continuous with infinite support. It postulates that, if only some
moments of the probability distribution (i.e., some nonrandom functions of the probability
distribution, like, e.g., mean and variance) are given in advance, one should select the
probability distribution that has maximal entropy among a set of probability distributions
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with the same support with the given moments.4 This principle leads to some common
families of probability distributions such as the family of normal distributions or the family
of exponential distributions. For example, the normal distribution with zero mean and
variance r2 has maximal entropy of all continuous distributions over the real line with zero
mean and variance r2. The exponential distribution with parameter k has maximal entropy
of all continuous distributions over the positive half real line with meank�1 (Shannon 1948).

The Maximum Entropy Principle has been used to specify ‘‘reasonable’’ null hypoth-
eses for contingency table analysis (Good 1963; Golan, Judge, and Perloff 1996), to
specify noninformative priors for Bayesian inference (Jaynes 1968), and for proposing
solutions to ill-posed inverse problems (Vardi and Lee 1993). But it has also been used for
EI (Johnston and Hay 1983; Johnston and Pattie 2000; Judge, Miller, and Cho 2004). Here,
we use the Principle of Maximum Entropy to motivate and construct a second-stage
probability model to account for inferential uncertainty.

Suppose (xijk) is an (I � J � K)-array of counts generated by a multinomial distribution
with size index n (the ‘‘population size’’) and cell probabilities p*ijk: Suppose, further, that
one has knowledge only about the marginal tables of this array and tries to make pre-
dictions about the cell counts. Using an EI method as discussed in the previous section, one
may arrive at an estimate p̂ijk for the cell probabilities. The model by which the cell
probabilities are estimated may or may not be correctly specified, that is, the ‘‘true’’ cell
probabilities p*

ijk may or may not satisfy the constraints inherent in the model. Based on the
EI procedure of choice, one makes the prediction np̂ijk about the cell count xijk. Then, the
error of prediction of xijk by p̂ijk can be decomposed as follows:

xijk � np̂ijk 5 n
xijk

n
� p*

ijk

� �
þ nðp*

ijk � p̂ijkÞ: ð18Þ

The difference ðxijk=nÞ � p*
ijk will have mean zero and variance p*

ijkð1 � p*
ijkÞ=n and thus

will be the smaller the larger n is, while the difference p*
ijk � p̂ijk will not become smaller

unless the model leading to p̂ijk is correctly specified, that is, if the assumptions of the EI
model employed are satisfied by p*

ijk: In the analysis of bias at the end of the last section,
we held p*

ijk fixed and considered the estimator p̂ijk as random. In contrast, we now propose
to change the roles of p̂ijk and p*

ijk; that is, to treat p̂ijk as fixed, in virtue of being a function
of the known marginal tables, and p*

ijk as the realization of a random variable Pijk.
If we are completely ignorant about the data array (xijk) except for the total sum n, then

any possible array of numbers (pijk) with 0 , pijk , 1 and
P

i;j;k pijk 5 1 would seem
equally plausible as having generated the unknown array of counts. We can represent this,
according to Laplace’s Principle of Indifference, by a probability distribution with a den-
sity function that is Uniform for all admissible arrays (pijk). Now, if each of the n indi-
viduals in the (I � J � K)-array falls into the cell (i, j, k) with probability Pijk, which is an
element of a random array (Pijk) with a Uniform distribution, then each possible array (xijk)
that may result from such a process has the same chance of occurrence. That is, there is
a direct connection between the perspective that focuses on our ignorance about the counts
xijk and the perspective that focuses on our ignorance about the data-generating process.

Taking this as a baseline, we can construct a distribution of plausible arrays (pijk) that
reflects our ignorance about the true cell probabilities ðp*ijkÞ that generated the unknown

4Although there is some relation between the two, ‘‘entropy’’ refers here to a functional of density or probability
mass functions and not to entropy in the sense of statistical mechanics and thermodynamics. For the relation, see
Jaynes (1957). There are several attempts at giving this principle a general axiomatic foundation, for example,
Jaynes (1957), Vasicek (1980), and Cziszar (1991).
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data (xijk)—an ignorance that is only reduced by the information contained in the marginal
tables ðnij�Þ5

P
k xijk

� �
; ðni�kÞ5

P
j xijk

� �
; and ðn�jkÞ5

P
i xijk

� �
and recovered by the EI.

Such a distribution should be as similar to the Uniform distribution described in the
previous paragraph as possible under the restriction that its mean is given by the estimates
produced by the EI method used. The Uniform distribution under consideration is a special
case of a Dirichlet distribution, that is, a Dirichlet distribution with all shape parameters
equal to one. Now, if we select a Dirichlet distribution that maximizes entropy under the
constraint that its mean is equal to the estimates obtained from an EI procedure, then we
have the distribution that is, under these constraints, the most similar to the Uniform
distribution in terms of the Kullback-Leibler criterion for the similarity of distributions.5

Informally speaking, the maximum entropy criterion leads here to the ‘‘flattest,’’ that is
least informative distribution with the given mean.

The selection of such an entropy-maximizing Dirichlet distribution is possible since by
its mean a Dirichlet distribution is only partially specified: If a multidimensional random
variable (Pijk) has a Dirichlet distribution with parameters hijk, its components have ex-
pectations pijk : 5EðPijkÞ5 hijk

h0
; where h0 : 5

P
r;s;t hrst: Therefore, each parameter hijk of

a Dirichlet distribution can be decomposed into a mean parameter pijk and a common scale
parameter h0 by hijk 5 pijkh0, so that an entropy-maximizing Dirichlet distribution with
mean pijk fixed at p̂ijk can be identified by maximizing

HDðuÞ5
X
i;j;k

lnCðh0p̂ijkÞ � lnCðh0Þ þ ðh0 � IJKÞwðh0Þ �
X
i;j;k

ðh0p̂ijk � 1Þwðh0p̂ijkÞ

ð19Þ

for h0, where w(�) is the digamma function (Abramovitz and Stegun 1964, 258).6

Since the family of Dirichlet distributions is a multivariate generalization of the family
of Beta distributions, we can use this family of distributions to illustrate what finding
a maximum entropy distribution entails. A Beta distribution is usually characterized by its
two shape parameters, which we call here /1 and /2: The mean of this distribution then is
p : 5/1=ð/1 þ /2Þ; so if we define h0 : 5/1 þ /2; the shape parameters can be reex-
pressed as /1 5 h0p and /2 5 h0ð1� pÞ and the variance as p(1 – p)/(1 þ h0). Figures 1
and 2 depict how a Beta distribution will look like for p fixed at 0.5 and 0.2, respectively,
for various values of h0 below, above, and equal to hMaxEnt, where hMaxEnt denotes the
value of h0 for which the entropy of the Beta distribution is maximal. As Fig. 1 shows,
the Uniform distribution over the interval [0, 1] is a special case of a Beta distribution: the
Beta distribution with maximal entropy subject to the constraint that the expectation is
equal to 0.5. Both figures indicate that, irrespective of the value of the expectation of the
distribution, values of h0 above hMaxEnt lead to single-peaked densities, where the peak is
the higher the larger h0 is. However, as h0 gets smaller, the density function puts more and
more weight on values around zero and one. Since the variance approaches a supremum of
p(1 – p) as h0 approaches zero, the variance of a Beta density is not a good measure of
uncertainty. Conversely, since the weight of the density is most evenly distributed if the
h0 attains the entropy-maximizing value, the entropy seems to be a much better measure of
uncertainty if the expectation p is fixed.

If each of the n individuals in the (I � J � K)-array falls into the cell (i, j, k) with
probability Pijk, where Pijk itself is part of a random array with a Dirichlet distribution with

5For details see Appendix (Section A.1) to this paper on the Political Analysis Web site.
6For a formal proof of the validity of this formula, see Appendix (Section B.2) at the Political Analysis Web site.
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parameters hijk 5 h0pijk, then the distribution of the possible resulting arrays (xijk) is a mix-
ture of a multinomial distribution with a Dirichlet distribution, a compound-multinomial
or Dirichlet-multinomial distribution (Mosimann 1962; Hoadley 1969). Just as the family
of Dirichlet distributions is a multivariate generalization of the family of Beta distri-
butions, the family of Dirichlet-multinomial distributions is a multivariate generalization
of the family of Beta-binomial distributions, which has been used to model over-
dispersed proportions and success counts (Skellam 1948; Crowder 1978; Prentice
1986). In fact, if an array of random variables (Pijk) has a joint Dirichlet distribution with
parameter array (hijk), each component of the array has a Beta distribution with parameters
h0/ijk and h0(1 – pijk) and each component of the corresponding array of counts (xijk) with
a Dirichlet-multinomial distribution has a Beta-binomial distribution with parameters
h0/ijk and h0(1 – pijk) (Mosimann 1962), where, as before, h0 5

P
i;j;k hijk: Now, the counts

in each cell have expectation npijk and variance npijk(1 – pijk)(n þ h0)/(1 þ h0). That is, the
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Fig. 2 Density of Beta distributions with mean held fixed at 0.2 and various values for the
parameter h0.
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Fig. 1 Density of Beta distributions with mean held fixed at 0.5 and various values for the
parameter h0.
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expectation is the same as if the counts had a multinomial distribution with cell probabil-
ities pijk, whereas the variance differs from the variance of such a multinomial distribution
by the factor (n þ h0)/(1 þ h0). Although proportions Xijk/n of counts Xijk with binomial
distribution are asymptotically normal and although arrays of proportions Xijk/n of arrays
of counts Xijk with multinomial distribution are asymptotically multivariate normal as n
approaches infinity, it will be a mistake to assume asymptotic normality in the case of
counts that have a Beta-binomial or Dirichlet-multinomial distribution, respectively: The
distribution of the proportions will converge to a Beta distribution or Dirichlet distribution,
respectively, which can have a shape quite dissimilar to the normal distribution if it has
maximal entropy.

The above considerations make clear that one cannot assume that the asymptotic dis-
tribution obtained from an EI procedure is normal. Therefore, one should not use the
normality assumption to construct confidence or prediction intervals based on the standard
errors of the estimates. Rather, we propose to use the quantile function of the Beta distri-
bution to construct approximate credibility intervals for the cell probabilities pijk and the
quantile function of the Beta-binomial distribution to construct approximate prediction
intervals for the cell counts xijk. If the counts in cell (i, j, k) have a Beta-binomial
distribution with parameters h0pijk and h0(1 – pijk), 95% prediction intervals would
be, for example, delimited by F�1

Bb ð0:025; h0; pijkÞ and F�1
Bb ð0:975; h0; pijkÞ þ 1; where

F�1
Bb ða; h0; pijkÞ : 5 sup x :f FBb;h0;pijkðxÞ, ag is the quantile function and

FBbðx; h0; pijkÞ : 5
Px

t5 0 fBbðt; h0; pijkÞ is the cumulative distribution function of the
Beta-binomial distribution with parameters h0pijk and h0(1 – pijk). That is, under the
assumption that the counts in cell (i, j, k) have this Beta-binomial distribution, the proba-
bility that the counts are in these intervals will be 95%.7

Since the reasoning behind this procedure is rather heuristic than justifiable in terms of
theoretical statistics or probability theory, it seems necessary to assess its performance by
way of a simulation study. Therefore, we conducted a systematic simulation experiment in
which we vary the size of the array of counts (xijk) and its total sum n. For each considered
array size I � J � K and each ‘‘population size’’ n, we (1) generated 2000 arrays of random
numbers ðxðrÞijk Þ with r 5 1, . . ., 2000, (2) computed the marginal tables ðnðrÞij� Þ; ðn

ðrÞ
i�k Þ; and

ðnðrÞ�jk Þ; and (3) used the Johnston-Pattie procedure to generate estimates of cell probabilities

ðp̂ðrÞijk Þ: We then (4) constructed prediction intervals for the cell counts based on the as-

sumption of the Johnston-Pattie model that the cell counts have, jointly, a multinomial
distribution and, individually, a binomial distribution with success probability p̂

ðrÞ
ijk and (5)

prediction intervals based on the procedure proposed in the present section. We then (6)
recorded whether the counts x

ðrÞ
ijk are covered by the respective prediction intervals, that is,

whether they are inside the intervals. The random counts are generated such that each array
of counts (xijk) that sums to n has the same chance of occurrence. Thus, the generated
arrays of counts are a simple random sample from all such arrays and the distribution of the
generated counts represents the initial ignorance about the interior of the black box before
a procedure of EI is applied. The simulation results may also be generalized such that they
are representative for the average performance with respect to all possible interiors of the
black box. By recording the performance of prediction intervals both based on assump-
tions of an EI procedure and based on the second-stage maximum entropy procedure, we
are able, first, to demonstrate the consequences of the indeterminacy that besets EI
and, second, to show the degree to which our proposed second-stage maximum entropy

7For details about the computation of Beta-binomial cumulative probability and quantile functions see Appendix
(Section B.4) on the Political Analysis Web site.

82 Martin Elff, Thomas Gschwend, and Ron J. Johnston



procedure improves over a ‘‘naive’’ application of EI and represents the actual amount of
uncertainty associated with EI procedures.

Table 1 presents the results of our simulation study regarding the coverage performance
of 95% prediction intervals of these two types with respect to an arbitrary chosen cell in
the respective arrays. Since the distribution from which cell counts are generated is
symmetric with respect to the cells in the array, any cell is as representative for the whole
set of counts in the array as any other cell. For convenience, we chose the cell with indices
(1, 1, 1). Panel (a) of Table 1 reports the coverage performance of naive prediction
intervals based on the assumption that the counts have a multinomial distribution with
correctly specified cell probabilities, whereas panel (b) reports the coverage performance
of prediction intervals constructed based on the second-stage maximum entropy method.

A comparison of the two panels (a) and (b) in Table 1 makes clear that prediction
intervals are a large improvement in comparison to naive model–based prediction inter-
vals. Panel (a) shows that the effective coverage of multinomial distribution–based pre-
diction intervals that cover the true counts decreases with increasing population size. If the
population size n is 10,000, the effective coverage may reach more than 50%, which still
falls short from the nominal coverage of 95%. But if the population size is 10 million, the
undercoverage of the naive prediction intervals is disastrous—in at most 6% of the cases
are the true counts inside a 95% prediction interval. This is a direct consequence of the
inconsistency of the estimates of the cell probabilities: The naive prediction intervals pre-
suppose that the standard deviation of xijk, conditional on a given cell probability pijk, in-
creases with the population size n only proportional to

ffiffiffi
n

p
: Consequently, the length of the

prediction intervals will decrease relative to the range of possible values of xijk (which is
delimited by zero and n) proportional to 1=

ffiffiffi
n

p
: Due to the fact that by construction of the

simulation experiment the cell probabilities will almost surely be misspecified, the actual
root mean square error of predictions based on the cell estimates will also reflect the error
incurred by misspecification. As n grows large, the effect of misspecification error obviously
will dominate the random variation of the cell counts xijk around their expectation npijk.

In contrast, the maximum entropy Dirichlet-multinomial based prediction intervals
show an effective coverage quite close to their nominal level, as appears in panel (b) of
Table 1. That the prediction intervals based on the second-stage maximum entropy method
still differ from their nominal level may have several reasons. These differences may just
be a consequence of simulation error, in which case these differences disappear as the
number of replications approaches infinity. However, these differences may also show that

Table 1 Simulation study of coverage of true cell counts and true cell probabilities after
2000 replications

Population size

Array size 100,000 10,000,000

(a) Effective coverage by prediction
intervals based on the assumption of
a multinomial distribution

3 � 3 � 50 18.4 2.1
7 � 7 � 50 28.0 2.6
3 � 3 � 200 33.0 3.3
7 � 7 � 50 54.1 6.0

(b) Effective coverage by prediction
intervals based on the second-stage
maximum entropy method

3 � 3 � 50 95.5 96.3
7 � 7 � 50 93.1 94.1
3 � 3 � 200 95.0 96.4
7 � 7 � 200 88.5 93.8
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our method is just an approximation. Our proposed method so far only takes into account
the consequences of inferential indeterminacy but not the consequences of sampling
variability. It takes into account that the true cell probabilities and true expected cell
counts cannot be known completely even if n approaches infinity. It does not, however,
take into account the fact that the cell probabilities are estimated on the basis of a finite n. It
may thus be possible to improve on the coverage performance of the prediction intervals if
a finite-n correction could be applied. However, this is beyond the scope of this paper since
it is mainly concerned with the consequences of inferential indeterminacy. Another reason
is that exact identity between effective coverage and nominal coverage would only be
achievable if the counts were continuous and not discrete. With finite n, discrete values may
just be too coarse. For example, for a population of size 100,000 and for 7 � 7 � 200 5

9800 cells, the actual coverage of the cell counts falls clearly short. That may be caused by
the fact that in this setting, the average counts per cell are less than four which is clearly
below 100. Therefore, it will be almost impossible to obtain exact percentiles for such
counts. Nevertheless, even if we admit that the proposed method is only an approximation,
it works better than prediction intervals that rely on the identifiability assumptions of the
EI procedure of Johnston and Pattie to hold.

4 Accounting for Sampling Variability

In the previous section, we considered the uncertainty about estimates that comes from the
unavailability of the complete data. The observed data, however, were assumed to be
population-level summaries. Probabilistic methods are employed in the previous sections,
first, to take into account that even population-level counts are the outcome of some
stochastic data-generating process and, second, to take into account the uncertainty about
estimates based on these counts. If, however, at least one of the available marginal tables is
not a population-level summary but comes from a sample, for example, from a survey
sample with data on ethnic identity and voting behavior, another level of uncertainty is
added.

For example, if instead of a population-level cross-tabulation of voting behavior and
ethnic group membership only a cross-tabulation 5(mij) from a sample is available and
the true counts in the array of combinations of ethnic group membership (with categories
i 5 1, . . ., I), voting behavior (with categories j 5 1, . . ., J), and voting district (with
running numbers k 5 1, . . ., K) are xijk, then (provided that we have a simple random
sample) the array of counts mij has a multinomial distribution with cell probabilities qij 5

nij�/n, where nij� 5
P

k xijk: For given marginal tables 5(n�jk), 5(ni�k), and 5(nij�),
the method proposed in the previous section leads to one set of parameters (hijk)5
u( , , ) of a Dirichlet-multinomial model of the counts xijk in the array. But for a given
sample cross-tabulation mij, there is more than one possible multinomial distribution with
cell probabilities qij and thus more than one possible marginal population-level table nij�
from which this sample may have been drawn. That is, there is more than one set of
parameters to be considered for modeling the distribution of the unknown counts in the
array (hijk)5u( , , ).

Of course, given a sample cross-tabulation, not all possible (I � J) arrays nij� withP
i; j nij� 5 n are equally plausible candidates. Rather, the plausibility of these candidates is

adequately expressed by the values f( j )5Pr( 5 j 5 ) of the probability mass
function of the conditional distribution of 5(Nij�) given the sample table (Mij)5 .
Now, since (Nij�) is an unobserved random variable in this perspective, it is no longer
possible to simply construct prediction intervals based on a quantile function
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F�1
Bb ða; h0; pijkÞ whose parameters are computable from fixed, observed marginal tables ,
, and . Rather, an appropriate quantile function is given by

F�1ða; h0; pijk j Þ5
X

t

F�1
Bb a; h0; pijk j
� �

f
�

j
�
; ð20Þ

where the sum is over all possible tables 5(nij�
(t)) (t 5 1, . . .) that satisfy

P
i;j n

ðtÞ
ij� 5 n:

This sum has no closed form, not the least because there is no function in closed form that
leads from the marginal tables 5(n�jk), 5(ni�k), and 5(nij�) to h0 and pijk (these
parameters have to be computed by numerical methods). Therefore, we propose a bootstrap
method to construct the limits of prediction intervals, which involves the following steps:

1. Each replication r 5 1, . . ., R starts by generating random counts from an
approximation of the conditional distribution of (nij) given (mij). This is done by
a double-bootstrap procedure. First, random counts ðmðrÞ

ij Þ from a multinomial
distribution with size index m and cell probabilities p*ij 5mij=m are generated.
From these random counts, a second, random set of cell probabilities p

ðrÞ
ij 5m

ðrÞ
ij =m

is computed. These are the cell probabilities of a multinomial distribution with
size index n from which a second set ðnðrÞij� Þ of counts is generated. This assures
that the (random) marginal tables ðnðrÞij� Þ are integers from a multinomial
distribution with size index n and reflect the variability of the observed sample (mij).

2. Based on the marginal tables ðnðrÞij� Þ; (ni�k), and (n�jk), first-stage cell probability
estimates p̂

ðrÞ
ijk are obtained based on the Johnston-Pattie model for each

replication r 5 1, . . ., R.

3. After setting pðrÞijk 5 p̂
ðrÞ
ijk values, hðrÞ0 are determined for each r such that the Dirichlet

distribution with parameters hðrÞijk 5 hðrÞ0 pðrÞijk has maximal entropy for given pðrÞijk :

4. Random numbers p
ðrÞ
ijk from the Dirichlet distribution with parameters hðrÞijk are

generated for each r.

5. For each r, random counts x
ðrÞ
ijk from a multinomial distribution with probability

parameters p
ðrÞ
ijk are generated. For each r, the random array ðxðrÞijk Þ has thus

a Dirichlet-multinomial distribution, however, with different parameters hðrÞijk for
each r.

After R replications, the predictions of the unknown cell counts xijk are given by the
averages R�1

P
r x

ðrÞ
ijk of the random counts for all i, j, and k, and the limits of the prediction

interval for each cell count xijk are given by the respective quantiles of the random counts
x
ðrÞ
ijk : In the next section, we demonstrate the application of this procedure to the recon-

struction of percentages of split-ticket votes in the 1996 General Election of New Zealand.

5 A Real-World Example: Split-Ticket Voting in New Zealand

The term ‘‘split-ticket voting’’ is a pattern of voting behavior that can emerge when voters
have the opportunity to cast several votes on the same occasion. For example, American
citizens have the opportunity to cast a vote both for a candidate who runs for the Presi-
dency and for a candidate for the House of Representatives. In parallel and mixed-member
electoral systems, voters may cast two votes in general elections, one with which they can
choose the candidate to represent the voting district they live in and one with which they
can choose which party they want to support for the proportional tier of the electoral
system. Variants of mixed-member electoral systems can be found, for example, in leg-
islative elections of Bolivia, Germany, New Zealand, and Venezuela; parallel voting sys-
tems can be found in general elections, for example, in Japan, Mexico, and South Korea.
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Strategic voting accounts emphasize the effect of ‘‘Duverger’s Law’’ on the amount of
split-ticket voting: Voters will give their most preferred party their list vote but, if they
expect that the district candidate of this party to have only little chances of electoral
success, restrict their choice on those candidates they deem to be potentially successful,
thus not to ‘‘waste their vote.’’ Often, available empirical data do not suffice to test such
accounts. Either there are only aggregate data on list and candidate votes in individual
voting districts available or the survey data, if they are available, are too sparse with regard
to candidate vote-list vote combinations in individual voting districts. Therefore, exam-
ining split-ticket voting is a typical field of application for EI (e.g., Burden and Kimball
1998; Gschwend, Johnston, and Pattie 2003; Benoit, Laver, and Gianetti 2004).

There are, however, some rare occasions where official district-level data are available
not only on list vote and candidate vote results but also on the numbers of straight- and
split-ticket votes. One of these occasions is the 1996 General Election of New Zealand.
This gives us the opportunity to examine the performance of the methods developed in the
two preceding sections in a ‘‘real-life’’ setting.

Three sorts of data are available on the 1996 General Election of New Zealand: (1)
official data on electoral results for party lists and for party candidates and independent
candidates for each of the 67 voting districts, (2) official data on total numbers of straight-
ticket and split-ticket votes for each of the voting districts, and (3) an 8 � 8 table of
combinations of list and candidate votes from a nation-level survey sample (Levine and
Roberts 1997; Johnston and Pattie 2000). That is, whereas the district-level aggregates

5(n�jk) and 5(ni�k) are observed, the nation-level aggregate 5(nij�) is not but only
a sample cross-tabulation 5(mij). To make an approximately valid EI about the level of
split-ticket voting in the individual voting districts, we thus need the bootstrap method
developed in the preceding section.

In the context of research on split-ticket voting, one is usually not interested in all
counts xijk in the array made of candidate votes, list votes, and voting districts. Rather, one
is interested in the proportion of split-ticket and straight-ticket votes in the individual
voting districts. This additional complication, however, can be tackled in a straightforward
manner. The bootstrap method of the preceding section produces random counts x

ðrÞ
ijk (r 5

1, . . ., R) from which point and interval predictions of the true counts xijk are computed.
Now, based on

f
ðrÞ
straight;k 5

P
i5 j x

ðrÞ
ijkP

i;j x
ðrÞ
ijk

and f
ðrÞ
split;k 5

P
i6¼j x

ðrÞ
ijkP

i;j x
ðrÞ
ijk

; ð21Þ

we obtain random proportions of straight-ticket and split-ticket votes.8 The averages
1
R

P
r f

ðrÞ
straight;k and 1

R

P
r f

ðrÞ
split;k can then serve as a point prediction of the proportions of

straight-ticket and split-ticket votes, whereas the simulated quantiles can serve as limits of
prediction intervals.

Figure 3 shows a comparison of actual against predicted percentages of ticket splitters
in the voting districts of New Zealand along with 95% prediction intervals.9 As can be seen

8A further note on notation: The expression
P

i5 j xijk refers to the sum of all elements xijk in unit (voting district) k
for which the first index (e.g., the vote for the candidate of party i) equals the second index (e.g., the vote for the list
of party j). The expression

P
i 6¼j xijk refers to the sum of all elements in which the first and the second index differ.

9Rather than showing an ordinary scatter plot of predicted against actual percentages, this plot contains a dot plot
of predicted and actual percentages against the individual voting districts (sorted by the predicted percentages) to
make it easier to discern the prediction intervals of cases with similar predicted or actual percentages of ticket
splitters.
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in this plot, there are three instances in which the actual percentage of ticket splitters lies
outside prediction intervals. The total coverage of the actual ticket-splitting percentages by
these prediction intervals thus is 95.5%, which is close to their nominal level. This con-
stitutes a slight overcoverage, but with only 67 voting districts, one can hardly expect to
achieve a coverage exactly at nominal level.

The application to the case of split-ticket voting in the 1996 General Election of New
Zealand is another corroboration of the method developed in the preceding sections.
Although, again, the match between the nominal coverage of the prediction intervals
and their effective coverage is not perfect, it is close enough to suggest that the methods
are, if not a final solution to the problem, a substantial step in the right direction. However,
the comparison of predicted and actual percentages of ticket splitting as well as the length
of the prediction intervals shows that EI cannot produce the miracle of delivering pre-
dictions from mere aggregates that are comparable in quality to estimates and predictions
obtained from fully observed data. In the New Zealand application, the predictions of
percentages of ticket splitters are in some districts roughly 10 percentage points away from
the actual percentages. Also, the length of the prediction intervals amounts to, on average,
15 percentage points. This makes again clear that the basic dilemma of EI should lead
scholars to take greatest care when they interpret results obtained from an EI procedure.

6 Discussion

In Sections 3 and 4, we develop a method of accounting for the extra amount of uncertainty
associated with estimates and predictions obtained from an EI procedure that stems from
a problem that we exposed in Section 2, the problem of inferential indeterminacy. Without

Fig. 3 Application of the second-stage maximum entropy approach to split-ticket voting in the 1996
General Election of New Zealand: true and predicted split-ticket percentages with prediction
intervals based on bootstrap percentiles, after R 5 2000 replications. The coverage of the true
percentages is 95.5%.
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the problem of inferential indeterminacy, it would be possible to model the data-generating
process of the counts xijk as a multinomial distribution. To model the consequences of
inferential indeterminacy for the uncertainty about cell probabilities, we use the conjugate
family of the multinomial, the family of Dirichlet distributions. To model the consequences
for uncertainty about cell counts, we use the family of mixtures of multinomial Dirichlet
distributions.

The first to consider Dirichlet-multinomial mixture distributions for EI are Brown and
Payne (1986). Their approach consists of an extension of the ecological regression model
(12), which allows the conditional probabilities pjjik to vary in different units k according to
a Dirichlet distribution with mean parameters E(pjjik) 5 pjji and precision parameter h0.
According to Brown and Payne (1986), both the mean and the dispersion parameters can
be estimated from the marginal tables n�jk and ni�k, the mean parameters based on gener-
alized least squares and the precision parameter based on the variance of the residuals of
the regression of n�jk on ni�k (Rosen et al. [2001] consider estimation of this model via
MCMC and a simpler model without a Dirichlet mixing distribution estimated via non-
linear least squares). Since the precision parameter h0 is estimated from the residuals of
this regression, this model may account for model departures with respect to those aspects
in which model (12) is more restrictive than the Johnston-Pattie model (8). But since the
precision parameter of the model in Brown and Payne (1986) is estimated based on the
observed marginal tables (ni�k) and (n�jk), the resulting Dirichlet model of the conditional
probabilities can hardly account for those model departures that can be detected only if the
full array (xijk) of counts is available. In contrast to the approach of Brown and Payne
(1986), we do not try to estimate the precision parameter h0 from the observable marginal
tables but rather determine its value according to an a priori criterion, the Principle of
Maximum Entropy. As our simulation experiments show, the values of the precision
parameter thus determined can capture much of the uncertainty caused by the possibility
of undetectable model departures. Therefore, we suggest that any method of constructing
prediction intervals for EI should lead to intervals at least as large as those based on our
proposed method. Otherwise, they cannot account for those undetectable model departures
that haunt the confidence in results of EI.

It seems that our method of accounting for the consequences of modeling indetermi-
nacy itself rests on a crucial assumption that a priori, without taking into account the
information contained in the marginal tables, any possible array of counts may occur with
the same probability. This, however, would be a misunderstanding. The Uniform distri-
bution reflects the ignorance about the true cell counts that characterizes the point of
departure of EI problems. It plays a role similar to a ‘‘flat’’ or noninformative prior in
Bayesian inference. Using an informative, non-Uniform distribution as a reference distri-
bution may increase the risk of biased predictions unless this reference distribution is
sufficiently close to the true distribution of the cell counts. We use a Uniform distribution
as reference specifically to avoid such possible bias. If, however, prior information is
available that can be summarized in a distribution of the cell probabilities, a generalization
of the maximum entropy method can be used: One can then, instead of maximizing entropy,
select a model that minimizes the directed Kullback-Leibler information divergence, also
known as Kullback-Leibler information criterion, relative to this prior distribution.10

10As Kullback (1959) and Good (1963) have pointed out, the Principle of Maximum Entropy is just a special case
of the Principle of Minimum Discriminating Information: Choosing the distribution with maximal entropy is
equivalent to minimizing the directed Kullback-Leibler information divergence relative to a Uniform distribu-
tion. For details see Appendix (Section A) on the Political Analysis Web site.
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As a method to construct a distribution of the cell counts, one may argue that the
method developed in Section 3 is deficient insofar as it only corrects consequences of
parametric assumptions of EI methods that could be bypassed by directly constructing
a distribution of the unknown cell counts xijk that, without any prior parametric assump-
tions, maximizes entropy subject to those constraints that reflect the information contained
in the known marginal tables. In principle, such a construction will be straightforward; in
practice, however, finding a solution will be infeasible because of its prohibitive compu-
tational complexity.11 The method developed in Section 3 contains some concepts of
Bayesian statistical inference, that is, a probability distribution on the parameters (the cell
probabilities) of a multinomial distribution, which is a member of the conjugate to the
family of multinomial distributions. But it does not make use of Bayes’s theorem. The
combination of the Johnston-Pattie model with the second-stage maximum entropy con-
struction may be viewed, at best, as an approximation to a posterior distribution of the cell
counts. However, we are not able to show how good an approximation this is except by
means of the simulation study, the results of which we report at the end of Section 3.
Therefore, a direct Bayesian approach that makes use of the complete set of tools of this
technique of statistical inference seems preferable to the approach proposed in this paper.
As can be shown,12 a posterior constructed by the straightforward application of Bayes’s
theorem to a noninformative prior distribution of the cell counts would be of surprisingly
simple structure. However, the computation of the posterior probabilities of the counts will
be as computationally demanding as a nonparametric maximum entropy model, making
a direct Bayesian approach as unfeasible as a nonparametric maximum entropy approach
to modeling the distribution of the cell counts.

Finally, we want to emphasize that one should not yield to the temptation of using cell
counts or cell probabilities as ‘‘data’’ in second-stage regression models. Apart from the
conceptual issues involved in fitting models to data predicted from another model and from
possible bias incurred by using such second-stage regressions (Herron and Shotts 2003,
2004), conventionally estimated standard errors of a naive second-stage regression model
will be highly inaccurate. Also, this problem cannot be cured by an increase in the number
of spatial units considered or by the number of cases within the respective spatial units.
Our simulation results reported at the end of Section 3 show how much one will be misled
if one relies on asymptotic theory in these cases. Therefore, instead of treating estimates
obtained from an EI as data, one should consider them as parameters of the predictive
distribution for unknown data and use this distribution for generating values for multiple
imputation (e.g., King et al. 2001). Of course, since the amount of unknown data is quite
large relative to the amount of known data, one would need a large number of imputed data
sets in order to get reliable estimates of quantities of interest and their variances. The
issues connected with such a use of EI results clearly deserve some further research, which
is, however, beyond the scope of this paper.

7 Conclusion

The point of departure of our paper is a fundamental dilemma of EI and of inference in ill-
posed inverse problems in general: Estimates can be identified only if certain restrictive
assumptions are made with respect to the structure of the data-generating process leading

11For details see Appendix (Section A.4) on the Political Analysis Web site.
12See Appendix (Section C) on the Political Analysis Web site.
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to the unknown data one tries to reconstruct. However, these assumptions may not be
satisfied by the unknown data, leading to serious bias in the estimates relative to the true
values of the data. This may be called the dilemma of fundamental indeterminacy (Cho
and Mansky forthcoming). We tackle this dilemma by proposing a method of delimiting
the error one has to expect when the assumptions needed for the identification of a solution
are violated by the unknown data.

We focus on a special model for EI, a version of the model proposed in Johnston and
Pattie (2000), because this model requires only relatively mild assumptions as compared to
those required by ecological regression models. We examine the consequences of possible
departures of the model assumptions. We find that prediction intervals based on the model
assumptions are far too narrow and show a very serious undercoverage of the unknown
data. The main contribution of our paper, however, is the development of a method for the
construction of prediction intervals that are at least approximately correct.

The method we propose consists in combining two stages. In the first stage, point
estimates for the unknown data are constructed based on a model that contains certain
assumptions inevitable for the identification of the solution. In the second stage, we
consider the set of all possible solutions that satisfy or do not satisfy these identification
assumptions. We construct a probability distribution that meets the requirement that its
expectation is the solution from the first stage but is otherwise as neutral as possible with
respect to other possible first-stage solutions. This distribution assigns the weights of
possible solutions in terms of values of its density functions as equal as possible, that
is, has maximal entropy, subject to the constraints on the expectation of this distribution.
Results from a simulation experiment show that if the population for which the EI is to be
made is large enough, prediction intervals based on our proposed two-stage method are
approximately correct.

We supplement this simulation experiment with a real-world application: the predic-
tion of district-level percentages of ticket splitting in the 1996 General Election of New
Zealand based on aggregate data about candidate votes and list votes at the voting-district
level and an 8 � 8 table obtained from a survey sample. This election is a rare opportunity
to check the performance of an EI procedure against real data: Not only are discrete-level
data available on candidate votes and list votes and a sample for candidate vote-list vote
combinations at the national level but also district-level data on the percentages of straight-
ticket and split-ticket votes. Therefore, we are able to compare predicted with actual
percentages of split-ticket votes for each voting district. Within the context of this appli-
cation, we address another issue that scholars dealing with aggregate data may face: Not
always are these aggregate data exact summaries of the population but rather a sample that
summarizes the population. As a solution for this problem, we propose a combination of
our two-stage maximum entropy method with bootstrapping from the empirical distribu-
tion of the sample. Our application of this combination to the New Zealand data shows that
it results in prediction intervals with a coverage performance roughly equal to their
nominal level: In 95.5% of the New Zealand voting districts lies the actual percentage
of split-ticket votes inside 95% prediction intervals constructed based on our proposed
method.

The main conclusion of our paper thus is that standard errors and confidence intervals
for EI problems that do not take into account the fundamental uncertainty associated with
any solution to ill-posed inverse problems may be grossly misleading. However, the
consequences of this fundamental uncertainty can be delimited, if not exactly, though
approximately. Therefore, despite the problems discussed in this paper, to reject altogether
the idea of EI on these grounds means throwing out the baby with the bathwater.
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