Appendix
 Weighting Parties and Coalitions: How Coalition Signals Influence Voting Behavior

Thomas Gschwend University of Mannheim
Michael F. Meffert Leiden University
Lukas F. Stoetzer Massachusetts Institute of Technology

A Tables for Austrian Election Study 1
B Figures for Austrian Election Study 5
C Tables for German Longnitudal Election Study 5
D Using the Coalition Partner's Ratings instead of Coalition Ratings in our Statistical Model 10
E Statistical Model to Estimate the Effect of Coalition Vignettes for Three- party Coalitions 11
F Control Variables 12
G Robustness Check: Unobserved confounders 15
H Diagnostics Austrian Election Study 17
D Diagnostics German Longitudinal Election Study 21

A Tables for Austrian Election Study

	Obs.	mean	sd	\min	\max
Rating ÖVP	1913	6.92	3.15	1	11
Rating SPÖ	1910	6.99	2.93	1	11
Rating Grüne	1907	6.35	3.11	1	11
Rating FPÖ	1907	3.68	3.03	1	11
Rating ÖVP-FPÖ	1883	4.07	3.05	1	11
Rating SPÖ-Grüne	1884	5.91	3.47	1	11
Rating ÖVP-Grüne	1885	5.94	3.09	1	11

Table 1: Descriptive statistics Austrain Election Study

	Vignettes			
	Greens-ÖVP	Greens-SPÖ	FPÖ-ÖVP	FPÖ-SPÖ
Stable decision	63	66	64	62
.. without intention	11	12	13	13
.. vote for party	52	54	51	49
Changing decision	36	34	36	38
... other party	10	9	9	11
... mobilization	16	16	15	14
.. demobilization	10	9	12	13

Table 2: Austrian Election Study: Changes in vote intention from standard to vignette decision. Values report column percentage points.

	ÖVP	Greens	other
ÖVP	23.15	1.36	3.21
Greens	0.29	11.87	3.50
other	6.23	4.67	45.72

Table 3: Transition Table for ÖVP Greens vignette. Rows refer to standard decision, columns to vignette decsion. Values are in percentage points.

	ÖVP	FPÖ	other
ÖVP	19.94	0.49	6.84
FPÖ	0.88	3.32	2.05
other	5.87	3.23	57.38

Table 4: Transition Table for $\ddot{O} V P$ FPÖ vignette. Rows refer to standard decision, columns to vignette decsion. Values are in percentage points.

	SPÖ	Greens	other
SPÖ	23.86	1.36	2.72
Greens	0.78	13.39	1.45
other	5.82	3.69	46.94

Table 5: Transition Table for SPÖ Greens vignette. Rows refer to standard decision, columns to vignette decsion. Values are in percentage points.

	SPÖ	FPÖ	other
SPÖ	17.13	0.68	10.26
FPÖ	0.68	3.97	1.74
other	5.91	1.84	57.79

Table 6: Transition Table for SPÖ FPÖ vignette. Rows refer to standard decision, columns to vignette decsion. Values are in percentage points.

	ÖVP-Greens	SPÖ-Greens	ÖVP-FPÖ	SPÖ-FPÖ
Mixing $1\left(\gamma_{1}\right)$	0.87	0.82	0.92	0.96
	$[0.80,0.96]$	$[0.75,0.88]$	$[0.82,0.99]$	$[0.88,1.00])$
Mixing $2\left(\gamma_{2}\right)$	0.44	0.43	0.64	0.7
	$[0.31,0.57]$	$[0.24,0.61]$	$[0.51,0.77]$	$[0.59,0.84]$
First Difference $\left(\gamma_{1}-\gamma_{2}\right)$	0.43		0.38	0.28
	$[0.28,0.59]$	$[0.19,0.59]$	$[0.11,0.43]$	$[0.10,0.38]$
Vote first decision (α)	2.57	2.81	1.74	1.85
	$[2.17,2.97]$	$[2.42,3.19]$	$[1.32,2.18]$	$[1.43,2.25]$
Rating $1\left(\lambda_{2}\right)$	0.74	0.92	0.59	0.58
	$[0.60,0.90]$	$[0.78,1.07]$	$[0.46,0.70]$	$[0.48,0.69]$
Rating 2 $\left(\lambda_{2}\right)$	0.46	0.33	0.43	0.39
	$[0.37,0.57]$	$[0.25,0.42]$	$[0.34,0.53]$	$[0.29,0.49]$
PID 1 $\left(\delta_{11}\right)$	2.6	2.05	2.79	2.34
PID 2 $\left(\delta_{12}\right)$	$[2.24,2.99]$	$[1.71,2.41]$	$[2.38,3.21]$	$[1.96,2.70]$
	0.47	0.61	0.87	0.68
Distance Left-Right $1\left(\delta_{21}\right)$	$[0.06,0.87]$	$[0.21,1.02]$	$[0.43,1.30]$	$[0.27,1.07]$
	0.04	0.02	0.02	0.01
Distance Left-Right $2\left(\delta_{22}\right)$	$[0.02,0.06]$	$[0.01,0.04]$	$[0.01,0.04]$	$[0.00,0.02]$
	0.02	0.02	0.02	0.01
N	$[0.00,0.03]$	$[0.01,0.03]$	$[0.00,0.03]$	$[-0.00,0.02]$

Table 7: Posteriori means and 95% Credible Intervals for Models in Austrian Election Study

	ÖVP-Green		SPÖ-Green		ÖVP-FPÖ		SPÖ - FPÖ	
	ÖVP	Green	SPÖ	Green	ÖVÜ	FPÖ	SPÖ	FPÖ
Constant $1\left(\beta_{1 j}\right)$ Constant $2\left(\beta_{2 j}\right)$	$\begin{gathered} -6.72 \\ {[-8.51-5.54]} \\ {[-9.64,68} \\ {[-9.54,-5.98]} \end{gathered}$	$\begin{gathered} -5.06 \\ {[-6.66-.31]} \\ -6.29 \\ {[-7.95,-5.08]} \end{gathered}$	$\begin{gathered} -6.8 \\ {[-8.67-4.93]} \\ -7.79 \\ {[-9.84,-6.20]} \end{gathered}$	$\begin{gathered} -3.01 \\ {[-4.19,-1.74]} \\ -2.86 \\ {[-4.40,-1.41]} \end{gathered}$	$\begin{gathered} -5.87 \\ {[-7.4,-4.38]} \\ {[-9.57,05,-4.91]} \end{gathered}$	$\begin{gathered} -5.09 \\ {[-6.45-.3 .95]} \\ [-6.41 .41,-4.51]) \end{gathered}$	$\begin{gathered} -4.83 \\ {[-6.26--3.48]} \\ {[-8.16,-4.03]} \end{gathered}$	$\begin{gathered} -3.98 \\ {[-5.21 .-2.81]} \\ -3.35 \\ {[-4.88,-1.85]} \end{gathered}$
Gender 1	$\begin{aligned} & -0.46 \\ & {[-0.90,-0.04]} \end{aligned}$	$\begin{gathered} 0.18 \\ {[-0.25,0.59]} \end{gathered}$	$\begin{gathered} -0.39 \\ {[-0.85,0.07]} \end{gathered}$	$\begin{gathered} 0.14 \\ {[-0.32,0.59]} \end{gathered}$	$\begin{aligned} & -0.0 .55 \\ & [-0.99,-0.10]) \end{aligned}$	$\begin{gathered} -0.13 \\ {[-0.51,0.26]} \end{gathered}$	$\begin{aligned} & -0.24 \\ & {[-0.65,0.18]} \end{aligned}$	$\begin{gathered} 0.11 \\ {[-0.28,0.49]} \end{gathered}$
Gender 2	$\begin{gathered} -0.90,13 \\ 0.13 \\ {[-0.38,0.65]} \end{gathered}$	$\left[\begin{array}{c} 0.42 \\ -0.09, \\ 0.90 \end{array}\right]$	$\begin{aligned} & -0.00,0.1 \\ & {[-0.65 .0 .42]} \end{aligned}$	$\begin{gathered} 0.02,12 \\ 0.0 .41,0.65] \end{gathered}$	$\begin{aligned} & -0.9,-0.05] \\ & -0.80,0.69] \\ & {[0.0 .0} \end{aligned}$	$\begin{gathered} {[-0.01,0.20]} \\ 0.93 \\ {[0.24,1.56]} \end{gathered}$	$\begin{gathered} 0.02 \\ {[-0.68,0.75]} \end{gathered}$	$\begin{gathered} -0.38 \\ {[-1.010 .25]} \end{gathered}$
Education 1	0.04	-0.06	${ }_{-0.12}$	-0.13	0.04		-0.19	-0.19
Educatio	$\stackrel{[-0.08,0.16]}{0.06}$	${ }_{[-0.18,0.05]}^{0.09}$	[-0.24, 0.01]	[-0.25, 0.00$]$	${ }^{[-0.08,0.16]} 0$	[-0.04, 0.17]	[-0.31, -0.08]	[0.31, 0.008$]$
Edu	${ }_{[-0.07,0.21]}$	${ }_{[-0.05, ~ 0.23]}$	[-0.14, 0.14]	[-0.14, 0.14]	${ }_{\text {[-0.16, }}^{0.24]}$	$\left.{ }^{\text {[-0.15, }} 0.23\right]$	[-0.30, ${ }^{-0.11]}$	${ }_{[-0.20,0.0 .13]}^{\text {- }}$
Religion 1	$\left[\begin{array}{c} -0.18 \\ {[-0.70,0.34]} \end{array}\right.$	$\begin{gathered} 0.25 \\ {[-0.26,0.79]} \end{gathered}$	$\begin{gathered} -0.1 \\ {[-0.65,0.40]} \end{gathered}$	$\begin{gathered} 0.09 \\ {[-0.41,0.61]} \end{gathered}$	$\begin{gathered} -0.23 \\ [-0.75,0.30]) \end{gathered}$	$\begin{gathered} 0.14 \\ --0.35,0.6 \end{gathered}$	${ }^{[-0.50,06}$	$\begin{gathered} 0.14 \\ {[-0.29,} \\ 0.59 \end{gathered}$
Religion 2	-0.35	0.47	-0.58	${ }_{-0.04}$	-0.73	${ }_{0}[0.29$	-0.7	0.25
	[-0.88, 0.21]	[-0.07, 1.01]	[-1.15, -0.03]	[-0.63, 0.55]	[-1.58, 0.15])	[-0.50, 1.08]	[-1.52, 0.13])	[-0.44, 0.98]
Union 1	$\stackrel{-0.1}{-0.56,0.36]}$	$\begin{gathered} -0.04 \\ {[-0.47,0.39]} \end{gathered}$	$\begin{gathered} 0.44 \\ {[-0.02,0.91]} \end{gathered}$	$\begin{gathered} 0.52 \\ {[0.06,0.97]} \end{gathered}$	${ }_{\text {[-0.59, }}^{-0.29]}$	$\begin{gathered} 0.05 \\ {[-0.35,0.49]} \end{gathered}$	$\begin{gathered} 0.42 \\ {[0.02,0.83]} \end{gathered}$	$\left[\begin{array}{c} -0.16 \\ {[-0.55,} \\ 0.24 \end{array}\right]$
Union 2	-0.63	-0.72	-0.23	0.28	-0.24	-0.57	-0.04	0.43
	[-1.19, -0.11]	[-1.24, -0.20]	[-0.83, 0.33]	[-0.24, 0.79]	[-1.06, 0.55]	[-1.26, 0.1	[-0.79, 0.75]	-0.19, 1.07]
Income 1	-0.01	-0.05	-0.19	-0.06	0.04	-0.09	-0.1	${ }^{-0.01}$
Income 2	$\xrightarrow{[-0.15,0.13]} \begin{aligned} & \text { 0.15 }\end{aligned}$	$[-0.19,0.09]$	[-0.34, -0.03] 0	[-0.21, $\left.0.07{ }^{-0.14}\right]$	[-0.08, 0.17$]$	${ }^{[-0.23, ~ 0.04]}$	[-0.24, 0.03]	
	[-0.01, 0.33]	[0.00, 0.33]	[-0.15, 0.19]	[-0.31, 0.04]	[-0.11, 0.42]	[-0.12, 0.29]	[-0.11, 0.34]	[-0.37, 0.03]
Age 1	${ }^{-0.01}$	-0.1	${ }^{-0.01}$	${ }^{0.44}$	${ }^{-0.01}$	${ }^{-0.15}$	${ }^{-0.01}$	0.42
	[-0.02, 0.00]	[-0.56, 0.36]	[-0.02, 0.00]	[-0.02, 0.91]	[-0.02, 0.01]	[-0.59, 0.29]	[-0.02, 0.01]	[0.02, 0.83]
Age 2	$\begin{gathered} -0.01 \\ {[-0.03,0.00]} \end{gathered}$	$\begin{gathered} 0 \\ {[-0.02,0.01]} \end{gathered}$	$\begin{gathered} -0.02 \\ {[-0.03,0.00]} \end{gathered}$	$\begin{gathered} -0.01 \\ {[-0.03,0.00]} \end{gathered}$	$\begin{gathered} 0.01 \\ {[-0.01,0.03]} \end{gathered}$	$\begin{gathered} 0.01 \\ {[-0.01, ~ 0.03]} \end{gathered}$	$\begin{gathered} 0 \\ {[-0.02,0.03]} \end{gathered}$	$\begin{aligned} & -0.02 \\ & {[-0.03,-0.00]} \end{aligned}$

Table 8: Posteriori means and 95 \% Credible Intervals of Controls for Models in Austrian Election Study

B Figures for Austrian Election Study

Figure 1: Probability to vote for party (in column) in standard vs. vignette decision by different levels of ratings for coalitions (coalition vignette in rows). The predicted probabilities are simulated for an average voter with no party identification.

C Tables for German Longnitudal Election Study

	Obs.	mean	sd	min	max
Rating CDU	1137	5.52	3.18	1	11
Rating SPD	1133	5.56	2.94	1	11
Rating FDP	1128	5.66	2.89	1	11
Rating Greens	1121	5.67	2.93	1	11
Rating Left	1130	4.18	3.09	1	11
Rating CDU-Greens	1088	4.82	2.73	1	11
Rating SPD-FDP-Greens	1071	4.74	2.80	1	11
Rating SPD-Greens-Left	1083	4.21	3.08	1	11
Rating SPD-FDP	1071	4.73	2.68	1	11

Table 9: Rating Descriptive Statistics German Longitudinal Election Study

	1	2	3
CDU	12.71	0.26	7.45
Greens	0.51	5.39	5.65
other	8.09	5.39	54.56

Table 10: Transition table for CDU Greens vignette. Rows refer to standard decision, columns to vignette decsion. Values are in percentage points.

	1	2	3	4
SPD	13.21	2.77	1.85	6.34
Greens	1.85	7.40	0.66	1.45
FDP	0.26	0.26	3.83	4.76
other	5.42	4.36	3.70	41.88

Table 11: Transition table for SPD Greens FDP vignette. Rows refer to standard decision, columns to vignette decsion. Values are in percentage points.

	1	2	3	4
SPD	9.66	1.55	2.84	9.66
Greens	0.64	6.57	0.39	4.25
Left	0.13	0.52	5.80	1.42
other	4.64	2.96	4.12	44.85

Table 12: Transition table for SPD Greens Left vignette. Rows refer to standard decision, columns to vignette decsion. Values are in percentage points.

	1	2	3
SPD	15.12	2.03	6.73
FDP	0.51	2.92	5.72
other	7.50	5.08	54.38

Table 13: Transition table for SPD FDP vignette. Rows refer to standard decision, columns to vignette decsion. Values are in percentage points.

	Vignettes			
	CDU-Greens	SPD-Greens	SPD-Greens-FDP	SPD-FDP
Stable decision	57	58	54	56
.. without intention	16	15	16	14
.. vote for party	41	43	38	42
Changing decision	44	42	47	43
... other party	19	19	20	19
... mobilization	18	18	18	19
.. demobilization	7	5	9	5

Table 14: German Longitudinal Election Study (GLES): Changes in vote intention from standard to vignette decision. Values report column percentage points.

	CDU-Greens	SPD-FDP-Greens	SPD-Greens-Left	SPD-FDP
Mixing $1\left(\gamma_{1}\right)$	0.88	0.77	0.60	0.75
	$[0.70,1.00]$	$[0.60,0.94]$	$[0.47,0.72]$	$[0.52,0.97]$
Mixing 2 $\left(\gamma_{2}\right)$	0.50	0.60	0.51	0.37
	$[0.36,0.64]$	$[0.50,0.71]$	$[0.43,0.58]$	$[0.26,0.49]$
First Difference $\left(\gamma_{1}-\gamma_{2}\right)$	0.39	0.17	0.09	0.38
	$[0.16,0.58]$	$[-0.03,0.36]$	$[-0.06,0.23]$	$[0.12,0.62]$
			0.80	1.05
Vote first decision (α)	0.70	0.73	$[0.40,1.19]$	$[0.61,1.49]$
	$[0.26,1.15]$	$[0.34,1.12]$	0.41	0.23
Rating 1 $\left(\lambda_{1}\right)$	0.30	0.33	$[0.32,0.49]$	$[0.15,0.32]$
	$[0.21,0.40]$	$[0.23,0.42]$	0.59	0.56
Rating 2 $\left(\lambda_{2}\right)$	0.50	$[0.48,0.71]$	$[0.71,1.00]$	$[0.44,0.68]$
	$[0.39,0.63]$	1.99	1.99	2.25
PID 1 $\left(\delta_{11}\right)$	2.39	$[1.69,2.33]$	$[1.67,2.31]$	$[1.87,2.63]$
	$[1.97,2.80]$	2.44	1.70	1.92
PID 2 $\left(\delta_{12}\right)$	1.99	$[2.05,2.87]$	$[1.28,2.13]$	$[1.48,2.35]$
Distance Left-Right $1\left(\delta_{21}\right)$	$[1.51,2.44]$	0.03	0.02	0.01
	$[0.01,0.05]$	$[0.01,0.04]$	$[0.00,0.02]$	$[0.01,0.06]$
Distance Left-Right 2 $\left(\delta_{22}\right)$	0.03	0.03	0.01	0.02
	$[0.01,0.06]$	$[0.01,0.05]$	$[-0.01,0.02]$	$[-0.00,0.04]$
N	779	757	776	787

Table 15: Posteriori means and 95 \% Credible Intervals for Models in GLES

	CDU-Greens		SPD-FDP	
		CDU	Greens	SPD

Table 16: Posteriori means and 95 \% Credible Intervals of Controls for Models with two-party coalitions in the German Longitudinal Election Study
 Election Study

	SPD-FDP-Greens			SPD-Greens-Left		
	SPD	Greens	FDP	SPD	Greens	Left
Constant $1\left(\beta_{1 j}\right)$	$\begin{gathered} -3.30 \\ ([-4.40,-2.29]) \end{gathered}$	$\begin{gathered} -3.77 \\ {[-5.11,-2.47]} \end{gathered}$	$\begin{gathered} -2.88 \\ {[-4.41,-1.48]} \end{gathered}$	$\begin{gathered} -3.69 \\ {[-4.76,-2.77]} \end{gathered}$	$\begin{gathered} -4.22 \\ {[-5.38,-3.03]} \end{gathered}$	$\begin{gathered} -4.10 \\ {[-5.61,-2.65]} \end{gathered}$
Constant $2\left(\beta_{2 j}\right)$	$\begin{gathered} -6.37 \\ {[-8.06,-4.90]} \end{gathered}$	$\begin{gathered} -6.28 \\ {[-8.54,-4.80]} \end{gathered}$	$\begin{gathered} -6.45 \\ {[-7.99,-4.91]} \end{gathered}$	$\begin{gathered} -7.46 \\ {[-8.86,-6.05]} \end{gathered}$	$\begin{gathered} -7.86 \\ {[-9.81,-6.12]} \end{gathered}$	$\begin{gathered} -6.72 \\ {[-8.88,-5.03]} \end{gathered}$
Gender 1	$\begin{gathered} 0.00 \\ {[-0.45,0.42]} \end{gathered}$	$\begin{gathered} -0.07 \\ {[-0.63,0.53]} \end{gathered}$	$\begin{gathered} -0.53 \\ {[-1.18,0.10]} \end{gathered}$	$\begin{gathered} 0.05 \\ {[-0.36,0.48]} \end{gathered}$	$\begin{gathered} 0.06 \\ {[-0.47,0.56]} \end{gathered}$	$\begin{gathered} 0.07 \\ {[-0.60,0.67]} \end{gathered}$
Gender 2	$\begin{gathered} -0.11 \\ {[-0.64,0.51]} \end{gathered}$	$\begin{gathered} 0.66 \\ {[0.08,1.32]} \end{gathered}$	$\begin{gathered} 0.42 \\ {[-0.22,1.04]} \end{gathered}$	$\begin{gathered} -0.20 \\ {[-0.86,0.28]} \end{gathered}$	$\begin{gathered} 0.56 \\ {[-0.13,1.22]} \end{gathered}$	$\begin{gathered} -0.06 \\ {[-0.78,0.69]} \end{gathered}$
Education 1	$\begin{gathered} -0.18 \\ {[-0.50,0.10]} \end{gathered}$	$\begin{gathered} -0.26 \\ {[-0.63,0.11]} \end{gathered}$	$\begin{gathered} -0.36 \\ {[-0.72,0.02]} \end{gathered}$	$\begin{gathered} -0.20 \\ {[-0.47,0.07]} \end{gathered}$	$\begin{gathered} -0.28 \\ {[-0.63,0.06]} \end{gathered}$	$\begin{gathered} -0.57 \\ {[-1.02,-0.12]} \end{gathered}$
Education 2	$\begin{gathered} 0.47 \\ {[0.12,0.87]} \end{gathered}$	$\begin{gathered} -0.07 \\ {[-0.50,0.37]} \end{gathered}$	$\begin{gathered} 0.18 \\ {[-0.22,0.58]} \end{gathered}$	$\begin{gathered} 0.06 \\ {[-0.32,0.41]} \end{gathered}$	$\begin{gathered} -0.06 \\ {[-0.50,0.38]} \end{gathered}$	$\begin{gathered} 0.11 \\ {[-0.26,0.58]} \end{gathered}$
Religion 1	$\begin{gathered} -0.13 \\ {[-0.72,0.50]} \end{gathered}$	$\begin{gathered} -0.38 \\ {[-1.24,0.47]} \end{gathered}$	$\begin{gathered} -0.04 \\ {[-0.95,0.80]} \end{gathered}$	$\begin{gathered} -0.10 \\ {[-0.71,0.50]} \end{gathered}$	$\begin{gathered} -0.36 \\ {[-1.19,0.48]} \end{gathered}$	$\begin{gathered} -0.02 \\ {[-0.97,0.88]} \end{gathered}$
Religion 2	$\begin{gathered} 0.24 \\ {[-0.47,0.94]} \end{gathered}$	$\begin{gathered} -0.81 \\ {[-1.81,0.18]} \end{gathered}$	$\begin{gathered} -0.22 \\ {[-1.36,0.77]} \end{gathered}$	$\begin{gathered} 0.67 \\ {[-0.06,1.39]} \end{gathered}$	$\begin{gathered} -0.76 \\ {[-1.88,0.26]} \end{gathered}$	$\begin{gathered} 0.03 \\ {[-0.93,0.99]} \end{gathered}$
Union 1	$\begin{gathered} -0.02 \\ {[-0.04,-0.00]} \end{gathered}$	$\begin{gathered} 0.00 \\ {[-0.01,0.02]} \end{gathered}$	$\begin{gathered} -0.01 \\ {[-0.02,0.01]} \end{gathered}$	$\begin{gathered} -0.02 \\ {[-0.03,0.00]} \end{gathered}$	$\begin{gathered} 0.00 \\ {[-0.02,0.02]} \end{gathered}$	$\begin{gathered} -0.00 \\ {[-0.02,0.02]} \end{gathered}$
Union 2	$\begin{gathered} 0.01 \\ {[-0.01,0.03]} \end{gathered}$	$\begin{gathered} -0.01 \\ {[-0.03,0.01]} \end{gathered}$	$\begin{gathered} 0.00 \\ {[-0.01,0.02]} \end{gathered}$	$\begin{gathered} 0.01 \\ {[-0.01,0.02]} \end{gathered}$	$\begin{gathered} -0.00 \\ {[-0.03,0.02]} \end{gathered}$	$\begin{gathered} 0.01 \\ {[-0.01,0.03]} \end{gathered}$
Income 1	$\begin{gathered} 0.18 \\ {[0.01,0.37]} \end{gathered}$	$\begin{gathered} 0.13 \\ {[-0.08,0.32]} \end{gathered}$	$\begin{gathered} 0.11 \\ {[-0.10,0.31]} \end{gathered}$	$\begin{gathered} 0.19 \\ {[0.02,0.39]} \end{gathered}$	$\begin{gathered} 0.19 \\ {[-0.01,0.40]} \end{gathered}$	$\begin{gathered} 0.29 \\ {[0.03,0.57]} \end{gathered}$
Income 2	$\begin{gathered} -0.14 \\ {[-0.38,0.07]} \end{gathered}$	$\begin{gathered} 0.07 \\ {[-0.14,0.27]} \end{gathered}$	$\begin{gathered} -0.08 \\ {[-0.31,0.13]} \end{gathered}$	$\begin{gathered} 0.05 \\ {[-0.17,0.25]} \end{gathered}$	$\begin{gathered} 0.12 \\ {[-0.11,0.36]} \end{gathered}$	$\begin{gathered} 0.12 \\ {[-0.15,0.40]} \end{gathered}$
Age 1	$\begin{gathered} -0.51 \\ {[-1.06,0.05]} \end{gathered}$	$\begin{gathered} -0.23 \\ {[-0.95,0.48]} \end{gathered}$	$\begin{gathered} -0.02 \\ {[-0.73,0.65]} \end{gathered}$	$\begin{gathered} -0.57 \\ {[-1.09,-0.05]} \end{gathered}$	$\begin{gathered} -0.54 \\ {[-1.25,0.17]} \end{gathered}$	$\begin{gathered} -1.42 \\ {[-2.68,-0.31]} \end{gathered}$
Age 2	$\begin{gathered} 0.24 \\ {[-0.41,0.90]} \end{gathered}$	$\begin{gathered} -0.47 \\ {[-1.26,0.25]} \end{gathered}$	$\begin{gathered} -0.08 \\ {[-0.83,0.63]} \end{gathered}$	$\begin{gathered} 0.29 \\ {[-0.39,0.90]} \end{gathered}$	$\begin{gathered} -0.61 \\ {[-1.51,0.22]} \end{gathered}$	$\begin{gathered} -0.65 \\ {[-1.59,0.25]} \end{gathered}$

D Using the Coalition Partner's Ratings instead of Coalition Ratings in our Statistical Model

For the SPÖ-FPÖ coalition vignette from the Austrian Pre-Election Study 2006 we have to slightly adjust the utility specification of our models, as the survey did not ask respondents about their rating of this coalition. We adjust the utility specification in a way that we are able to use the rating of the coalition partner to estimate the mixing parameter. While for the utility specification of the SPÖ we include the FPÖ rating in the coalition component, for the utility specification of the FPÖ we include the SPÖ rating in the coalition component. The following shows why this specification still allows us to infer about an increase or decrease in reliance on coalition characteristics.

Suppose that every respondent i 's coalition rating can be expressed as a weighted combination of the respective coalition partners rating scores. For a coalition of two parties this means that the coalition rating C_{i} can be expressed as: $C_{i}=w P_{i j}+(1-w) C P_{i j}$, where $P_{i j}$ is the rating of the party j and $C P_{i j}$ is the rating of the respective coalition partner of party j. w is a weight bounded between 0 and 1 . Instead of estimating $V_{i j}^{k}=\lambda\left[\gamma_{k} P_{i j}+\left(1-\gamma_{k}\right) C_{i}\right]$ for $k \in\{1,2\}$, the mixture between party and coalition ratings, we can substitute in C_{i} from the above equation. This allows us to get the utility in terms of party j 's rating and the rating of its respective coalition partner: $V_{i j}^{k}=\lambda\left[\gamma_{k}^{*} P_{i j}+\left(1-\gamma_{k}^{*}\right) C P_{i j}\right]$, where $\gamma_{k}^{*}=\gamma_{k}+w-\gamma_{k} w$, i.e. γ_{k}^{*} and γ_{k} are linear transformations of one another and therefore measured on different scales.

Assuming that w does not change across both decision because coalition ratings are a pre-treatment characteristic, and that $w \neq 1$ (otherwise this would imply that $\gamma^{*}=1$, i.e., coalition preferences do not matter at all, which previous research has shown to be false) one can show that

$$
\gamma_{1}^{*}-\gamma_{2}^{*}>0 \Longleftrightarrow(1-w)\left(\gamma_{1}-\gamma_{2}\right)>0 \Longleftrightarrow \gamma_{1}-\gamma_{2}>0 .
$$

Thus, even if we have to use the coalition partner rating instead of the coalition rating and find that $\gamma_{1}^{*}-\gamma_{2}^{*}>0$, we can conclude that $\gamma_{1}-\gamma_{2}>0$ if we could have measured it, i.e., that voters rely more on coalition considerations in their decision calculus when being primed by such coalition signal.

E Statistical Model to Estimate the Effect of Coalition Vignettes for Three-party Coalitions

Two of the coalition vignettes in the GLES refer to three party coalitions.
In order to make use of vignettes of three-party coalitions we straightforwardly extend our model to 4×4 choices to account for a larger choice-set. Each respondent could report an intention to vote for one of the three parties in such a coalition or, as before, do something else. In the following we describe how this changes our model.

The larger choice-set now consists of four choices, $j \in\{1,2,3,4\}$. Choice options ' 1 ' to ' 3 ' refer to the three different parties in such a coalition, and $j=$ ' 4 ' indicates, as before, respondents intending to vote for any other party on the ballot, not voting at all, or providing a "don't know" answer. This yields 4×4 transition probabilities with 16 outcomes.

	$y_{2}=1$	$y_{2}=2$	$y_{2}=3$	$y_{2}=4$
$y_{1}=1$	π_{11}	π_{12}	π_{13}	π_{14}
$y_{1}=2$	π_{21}	π_{22}	π_{23}	π_{24}
$y_{1}=3$	π_{31}	π_{32}	π_{33}	π_{34}
$y_{1}=3$	π_{41}	π_{42}	π_{43}	π_{44}

Table 18: Conceptualization of a sequential choice process with 16 transition probabilities

While neither the utility specification nor the derivation of the probabilities change
in this model, the increased choice set results in a different model for these transition probabilities.

$$
\begin{equation*}
\pi_{j_{1} j_{2}}=\frac{e^{V_{i j_{1}}^{1}}}{e^{V_{i 1}^{1}}+e^{V_{i 2}^{1}}+e^{V_{i 3}^{1}}+e^{V_{i 4}^{1}}} \times \frac{e^{V_{i j_{2}}^{2}}}{e^{V_{i 1}^{2}}+e^{V_{i 2}^{2}}+e^{V_{i 3}^{2}}+e^{V_{i 4}^{1}}} \tag{1}
\end{equation*}
$$

where there are four utility specifications. To identify this model we set $V_{i 4}^{1}$ and $V_{i 4}^{2}$ to potion of neither intending to vote for any of the parties equal to zero. Again using the same independent variables as before we estimate the joined probability distribution $\operatorname{pr}\left(\mathbf{\Theta} \mid P_{i j}, C_{i}, \mathbf{Z}_{\mathbf{i j}}, \mathbf{X}_{\mathbf{i}}, y_{1 j}\right)$ of the parameters given the data where the likelihood is:

$$
\begin{equation*}
L=\prod_{i=1}^{N} \prod_{j_{1}=1}^{4} \prod_{j_{2}=1}^{4} \pi_{j_{1} j_{2}}^{\zeta_{j_{1} j_{2}}} \tag{2}
\end{equation*}
$$

$\zeta_{j_{1} j_{2}}=1$ if $y=Y_{j_{1} j_{2}}$ and 0 otherwise. Comparing the mixing parameters from the standard and the vignette decision allows use to test whether the coalition vignette primes respondents to rely more on coalition considerations.

F Control Variables

In our model specifications we include controls for party identification, left-right distance, age, gender (i.e., female), education, religion (i.e., catholic), union membership and income. In this appendix we briefly discuss operationalization of these concepts.

In the Austrian Pre-Election Study the variables are coded from the following questions:

- The survey question regarding 'Party Identification' in the Austrian Pre-Election Study reads: In Austria many people tend towards a political party, although they sometimes vote for another party. How is that with you? Do you tend towards a specific party? If so, which one? Consequently, we code PID $=$ ' 1 ' if a respondent identifies with a specific party and a zero otherwise.
- We created perceived policy distance to a party from a common 11-point left right scale. Respondents where asked to place themselves and all respective parties on the scale. Based on this we created negative quadratic distance as measurement of a respondents distance to each respective party.
- The respondent's age and gender ($1=$ 'female' $)$ were asked at the beginning of the survey.
- It was asked for a respondent's education using a categorical scale ranging from (1) Hauptschule to (7) university degree.
- Respondent's were asked about their religion. They were able to choose between "Catholic", "Protestant", and "Other". In our models we include a dummy for catholic respondents.
- For union membership we include a dummy wether the respondent or one of the household members is member of a union.
- Income was measured on an increasing categorical scale ranging from (1) less than 500 Euro to (8) more than 5.000 Euro, in 50 Euro steps.

The conceptualizations in the GLES is very similar:

- The survey question for 'Party Identification' in the GLES is the same than in Austria: In Germany many people tend towards a political party, although they sometimes vote for another party. How is that with you? Do you tend towards a specific party? If so, which one? As before, we code PID $=$ ' 1 ' if a respondent identifies with a specific party and a zero otherwise.
- The GLES includes the same question regarding left-right positions of respondents and parties than in the Austrian Election study. We employ perceived quadratic-
distance on the 11 point let-right scale to each party as a measurement of policydistance.
- The respondent's age and gender were also asked at the beginning of the survey.
- Respondent's were asked about their last degree. Ranging from (1) Abitur to (4) no degree.
- Respondent's were able to choose among "Catholic", "Evangelic - Protestant", "Evangelic - congregational chapel", "other christian confessions", "Jewish", "Muslim" or other. Again, we include a dummy include a dummy for catholic respondents.
- A survey-question asked if a respondent is part of a specific organization. We include a dummy if a respondent indicates being a member of a union.
we include a dummy wether the respondent or one of the household members is member of a union.
- Income was as well measured on an increasing categorical scale ranging from (1) less than 500 Euro to (11) more than 5.000 Euro.

G Robustness Check: Unobserved confounders

We checked the robustness of our results against unobserved confounders by running each Model five times on a randomly constructed three quarter subset of the respective datasets. For each of the models this yields five varying estimates of the first difference $\left(\gamma_{1}-\gamma_{2}\right)$ between weight put on party vs. coalition considerations in the normal and vignette decision. The logic of this robustness check is straightforward: If the estimates confirm the increase of coalition considerations for each of the subsets, we can be confident that our results are not driven by a subset within the dataset. Additionally, we might combine our estimates to an overarching estimate applying techniques from multiple imputation (?, p.53). This method takes into account variation over the estimates and uncertainty within each estimation.

Figure 2: Robustness test over different Sub-Samples Austria

The results of our main analysis are mostly robust over the different subsets. For three out of four two party coalitions we find the combined 95% confidence intervals to
exclude zero. Figure 2 shows the results for the Austrian Election Study and Figure 3 for the German longitudinal election study. For each vignette we show the five varying estimation results in gray. The dot indicates the median of posteriori draws with 95% credible intervals. The point-ranges in black show the combined estimates.

Figure 3: Robustness test over different Sub-Samples GLES

For the Austrian Election study the estimates are generally above zero, confirming the robustness of our results. For the German Election study we find similar support for the CDU-Greens party-coalitions, but not for three-party-coalitions and the SPD-FDP coalition. In these three cases the 95% confidence intervals include zero. Still, all five median estimates are above zero rather supporting our priming argument than rejecting it all together. Especially, since in some of the subsets we find indication of increased coalition considerations in respondents intended voting decisions.

H Diagnostics Austrian Election Study

Diagnostics for ÖVP-Geens Coalition

Gelman Diagnostic
Potential scale reduction factors:

Point est. Upper C.I.

delta[1]	1.07	1.27
delta[2]	1.45	2.34
gamma[1]	1.01	1.01
gamma[2]	1.03	1.12

Multivariate psrf
1.3

Heidelberg and Welch half-width test

Stationarity start		
test	iteration	

Geweke Test
[[1]]
Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]

$3.430-1.500 \quad 1.884-1.644$

[[2]]
Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]

$-1.1492 \quad 0.7202 \quad 2.8444 \quad 0.6514$

Diagnostics for ÖVP-FPÖ Coalition

Gelman Diagnostic
Potential scale reduction factors:

	Point est.	Upper C.I.
delta[1]	1.03	1.12
delta[2]	1.01	1.02
gamma[1]	1.01	1.03
gamma[2]	1.00	1.00

Multivariate psrf
1.03

Heidelberg and Welch half-width test

Stationarity start p-value
test iteration
delta[1] passed $1 \quad 0.0613$
delta[2] passed $1 \quad 0.5030$
gamma[1] passed $1 \quad 0.2759$

gamma[2] passed	1	0.8615

	Halfwidth Mean Halfwidth test	
delta[1] passed	0.581	0.0277
delta[2] passed	0.431	0.0126
gamma[1] passed	0.920	0.0045
gamma[2] passed	0.640	0.0074

Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$

delta[1] delta[2] gamma[1] gamma[2]

$3.1043 \quad 0.4840-0.9829 \quad 0.0309$
[[2]]

Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]
$\begin{array}{llll}-1.8715 & 1.0712 & 1.6970 & 0.1329\end{array}$

Diagnostics for SPÖ-Greens Coalition

Gelman Diagnostic
Potential scale reduction factors:

	Point est. Upper C.I.	
delta[1]	1.01	1.01
delta[2]	1.07	1.27
gamma[1]	1.00	1.00
gamma[2]	1.01	1.02

Multivariate psrf

1.05

Heidelberg and Welch half-width test

Stationarity start p-value
test iteration

delta[1] passed	401	0.338
delta [2] passed	1	0.591
gamma [1] passed	201	0.304
gamma [2] passed	1	0.207

	Halfwidth Mean test	
delta[fwidth		
delta[2] passed	0.939	0.02935
gamma[1] passed	0.341	0.01038
gamma[2] passed	0.819	0.00255
Geweke Test		
[[1]]		

Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]
[[2]]

Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]
$-0.07725 \quad 0.71920-0.06870 \quad 1.43216$

Diagnostics for SPÖ-FPÖ Coalition

Gelman Diagnostic
Potential scale reduction factors:

	Point est. Upper C.I.	
delta[1]	1.01	1.03
delta[2]	1.07	1.25
gamma[1]	1.01	1.02
gamma[2]	1.01	1.05

Multivariate psrf
1.05

Heidelberg and Welch half-width test

Stationarity start p-value
test iteration

delta[1] passed	1	0.212
delta[2] passed	1	0.358
gamma[1] passed	1	0.412
gamma[2] passed	1	0.438

Halfwidth Mean Halfwidth
test
delta[1] passed 0.5790 .01843
delta[2] passed 0.3970 .01581
gamma[1] passed 0.9540 .00562
gamma[2] passed 0.6990 .00721

Geweke Test
[[1]]

Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$

delta[1] delta[2] gamma[1] gamma[2]

$\begin{array}{llll}0.6625 & -2.6106 & 1.0443 & -0.2252\end{array}$
[[2]]

Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]
$\begin{array}{llll}0.7664 & -1.0564 & 1.0515 & 0.6887\end{array}$

I Diagnostics German Longitudinal Election Study

Diagnostics for CDU-Greens Koalition

Gelman Diagnostic
Potential scale reduction factors:

	Point est. Upper C.I.	
delta[1]	1.01	1.05
delta[2]	1.00	1.01
gamma[1]	1.00	1.00
gamma[2]	1.00	1.00

Multivariate psrf
1.01

Heidelberg and Welch half-width test

Stationarity start		
test	p-value	
iteration		

delta[1] passed 0.2920 .01026
delta[2] passed 0.5020 .01810
gamma[1] passed 0.8850 .00711
gamma[2] passed 0.4960 .00793

Geweke Test
[[1]]

Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]
$2.64201 \quad 0.03525-1.02927 \quad 0.95999$
[[2]]

Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]
$-2.33326 \quad 0.01583 \quad 0.61036-1.34477$

Diagnostics for SPD-FDP-Greens Coalition

Gelman Diagnostic
Potential scale reduction factors:

	Point est.	Upper C.I.
delta[1]	1.01	1.06
delta[2]	1.01	1.01
gamma[1]	1.00	1.01
gamma[2]	1.00	1.00

Multivariate psrf
1.01

Heidelberg and Welch half-width test

Stationarity start $p-v a l u e$ test iteration		
delta[1] passed	1	0.8286
delta[2] passed	1	0.8318
gamma[1] passed	1	0.1780
gamma[2] passed	1	0.0692

Halfwidth Mean Halfwidth
test
delta[1] passed 0.3340 .01290
delta[2] passed 0.5880 .01982
gamma[1] passed 0.7630 .00819
gamma[2] passed 0.6010 .00482

Geweke Test
[[1]]
Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]

$1.8742 \quad 0.1578$
-2.5461

[[2]]
Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]
-0.7552 0.8137 0.6559 0.8506

Diagnostics for SPD-Greens-Left Coalition

Gelman Diagnostic
Potential scale reduction factors:

	Point est. Upper C.I.	
delta[1]	1.02	1.07
delta[2]	1.05	1.21
gamma[1]	1.00	1.00
gamma[2]	1.01	1.05

Multivariate psrf
1.05

Heidelberg and Welch half-width test

Stationarity start			p-value
test	iteration		

Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]
$-0.2004-0.1318 \quad 1.02340 .1727$
[[2]]
Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]
$1.38262-2.35889$ 0.09723 -1.42329

Diagnostics for SPD-FPD Coalition

Gelman Diagnostic
Potential scale reduction factors:

	Point est.	Upper C.I.
delta[1]	1.00	1.00
delta[2]	1.08	1.31
gamma[1]	1.00	1.00
gamma[2]	1.01	1.04

Multivariate psrf
1.06

Heidelberg and Welch half-width test

Stationarity start			p-value
test	iteration		

Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]
$-0.8941 \quad 1.7907 \quad 1.3562 \quad 2.5013$
[[2]]
Fraction in 1st window $=0.1$
Fraction in 2nd window $=0.5$
delta[1] delta[2] gamma[1] gamma[2]
$0.8229 \quad 0.9172$-0.8171 1.3644

