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Abstract Consensus analysis enables estimation of indi-
vidual differences in competencies and response tendencies
when answer keys to dichotomous forced-choice questions
are unknown. CAML, a set of functions written in R,
implements maximum likelihood estimation for the general
Condorcet model that underlies consensus analysis. CAML
avoids problems of alternative approaches that have often
rendered consensus analysis impractical or unfeasible in the
past. It provides (1) measures of model fit, (2) a measure of
consensus, (3) point and interval estimates of competencies
and response tendencies, and (4) an estimate of the
unknown answer key. The present article describes the
general Condorcet model, the CAML algorithms, and the
handling of the software. In addition, the validity of CAML
results is tested in a recognition memory study using
selective experimental manipulations of the parameters.
The results show that CAML works very well in practice
and provides valid estimates of competencies, response
tendencies, and answer keys.

Keywords Cultural consensus analysis . General Condorcet
model . Maximum likelihood estimation

The measurement of individual differences in competencies
is one of the core issues in psychological assessment.
Typically, item-response models are used to derive esti-
mates of competence on the basis of a set of items with a
well-defined answer key. The answer key enables classifi-

cation of participants’ responses as correct or incorrect,
separately for each item. Responses scored correct or
incorrect are then used as the basic data that enter into the
analysis.

Sometimes, however, the situation is more complicated.
This is certainly the case when the answer key to a set of
items is unknown to the assessor. Consensus analysis
(Batchelder, Kumbasar, & Boyd, 1997; Batchelder &
Romney, 1986, 1988; Romney, Batchelder, & Weller,
1987; Romney, Weller, & Batchelder, 1986) was designed
to handle this difficult situation. Such situations arise, for
example, in the field of anthropology for which consensus
analysis was developed originally. An anthropologist
exploring an unknown culture must rely on the reports of
informants. Assuming that several independent informants
respond to the same questions concerning their culture, they
will probably agree for some of the questions; for others,
they will not. The true state of affairs is unknown to the
anthropologist studying the informants’ reports. Hence,
responses cannot simply be scored as “correct” or “incor-
rect” (Romney et al., 1987; Romney et al., 1986).

The basic problem structure addressed by consensus
analysis is also found in other areas of research. For
example, in eyewitness testimony, several eyewitnesses
may report on the same set of questions concerning a
critical event—for example, an accident, a robbery, or a
murder. Again, there is no predefined answer key, and the
eyewitnesses will typically agree on some details, but not
on others. These are just two examples to illustrate
problems of test theory without an answer key (Batchelder
& Romney, 1988).

Individual differences in informant competencies are a
major reason for discrepant responses to the same set of
questions. The precision of eyewitness testimony, for

A. Aßfalg (*) : E. Erdfelder
Lehrstuhl Psychologie III, Universität Mannheim,
68131 Mannheim, Germany
e-mail: asfalg@psychologie.uni-mannheim.de

Behav Res (2012) 44:189–201
DOI 10.3758/s13428-011-0138-0



example, depends on the knowledge of the witness
concerning a certain event. Situational, cognitive, and
motivational factors, such as visual perspective, distance
to the event, focus of attention, forgetting, and motivational
involvement, may affect this knowledge. In addition,
possible response tendencies, such as the willingness to
respond “yes,” have to be taken into account. Thus,
individual differences in both competencies and response
tendencies play a crucial role in the assessment of responses
when the answer key is unknown to the assessor. In such
cases, consensus analysis provides a valuable method for
the conjoint estimation of individual competencies and the
answer key to a set of questions (Romney et al., 1986).

In the present article, we introduce CAML (consensus
analysis via maximum likelihood), a new consensus
analysis tool written for the R statistics software (R
Development Core Team, 2011). R is freely available and
is supported by an active community that continuously
provides software solutions to various statistical problems
(e.g., Bulté & Onghena, 2008; Grassie, Luccio, & Di Blas,
2010; Nimon, Lewis, Kane, & Haynes, 2008). CAML
makes use of the maximum likelihood method of parameter
estimation. Notably, CAML does not require simplifying
assumptions underlying the estimation method used most
often, if not exclusively, in consensus analysis—namely,
factor analysis (Batchelder & Romney, 1988; Romney et
al., 1986). By providing improved software for consensus
analysis, we hope that future choices of estimation
procedures will be influenced less by computational
simplicity of the estimation method and more by the
performance of the method. For noncommercial purposes,
CAML is freely available at http://psycho3.uni-mannheim.
de/index.php?n=Main.CAML, along with sample data and
a quick-start guide.

The second purpose of this study was to test the validity
of the general Condorcet model (GCM) that underlies
consensus analysis as implemented in CAML. We con-
ducted a recognition memory experiment that required
participants to memorize a set of words for a later
recognition test including both old words studied previous-
ly and new words randomly intermixed. Of course, the
answer key (i.e., whether a test item is old or new) is
known in this application. However, by applying consensus
analysis to the recognition judgments, the answer key is
ignored. This enables the comparison of CAML estimates
with the estimates obtained when the actual answer key is
used. Moreover, we experimentally manipulated indepen-
dent variables that should affect GCM parameters selec-
tively if the model is psychologically valid. Although the
GCM has often been used in anthropology (e.g., Romney et
al., 1987), social network analysis (Batchelder et al., 1997),
and cognitive psychology (e.g., Ameel, Stroms, Malt, &

Sloman, 2005; Bailenson, Shum, Atran, Medin, & Coley,
2002; Barg et al., 2006; Godoy et al., 2008; Johnson,
Mervis, & Boster, 1992; Majid, Boster, & Bowerman,
2008; Malt, Sloman, Gennari, Shi, & Wang, 1999; Medin et
al., 2006; Shafto & Coley, 2003), this is, to our knowledge,
the first test of the validity of the GCM by means of selective
experimental manipulations of the model’s parameters.

In the next section, we briefly introduce the GCM. This
is followed by a short description of the de facto standard
for consensus analysis so far, the factor-analytic approach.
Next, we discuss maximum likelihood estimation for the
GCM. We describe how to estimate model parameters and
confidence intervals and how to test for consensus among
informants within this approach. This is followed by a
discussion of the advantages of CAML, as compared with
existing software for maximum likelihood estimation in
multinomial models. Subsequently, we explain CAML
handling—that is, data input, specification of the analysis,
and the output of CAML. In the final section, we present
the validation study of the GCM sketched above.

The general Condorcet model

The following outline of the GCM makes use of the
notation previously introduced in the literature (Hu &
Batchelder, 1994; Karabatsos & Batchelder, 2003). Assume
that N informants respond to a set of M questions with one
of two possible responses—for example, “yes” or “no.” The
response matrix Xik contains the responses of informants i =
1, …, N to items k = 1, …, M, such that

Xik ¼
1; if informant i answers 00yes00 to item k

0; if informant i answers 00no00 to item k:

(

The response matrix is the only input required to perform
consensus analysis. Furthermore, the (unknown) answer
key for item k is given by

Zk ¼
1; if the correct response to item k is 00yes00

0; if the correct response to item k is 00no00:

(

Consensus analysis accounts for all observations in the N-
dimensional contingency table—that is, for all observed item-
specific response patterns <X1k, …, Xik, …, XNk>, k = 1, …,
M, across the N informants. Because some response patterns
may occur more than once, there are J ≤ M nonredundant
response patterns (with J = M only when none of the patterns
occurs at least twice). We use j = 1, …, J as an index
representing nonredundant response patterns. Each of the J
nonredundant response patterns corresponds to one of the 2N

cells of the N-dimensional contingency table.
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The GCM explains the 2N possible data categories using
three types of parameters. PZ is the probability that the
correct response is “yes.” By implication, the complement
1 - PZ is the probability that the correct response is “no.”
Furthermore, each informant is characterized by two
probabilities. In accordance with signal detection theory
(Macmillan & Creelman, 2008), these probabilities are
called hit, Hi = P(Xi = ”yes” | Z = ”yes”) (i.e., the
probability of informant i responding “yes” given that the
correct response is “yes”) and false alarm, Fi = P(Xi =
“yes” | Z = “no”) (i.e., the probability that i responds “yes”
given that the correct response is “no”).

If we denote the vector of model parameters by
q ¼ < PZ ;HN

i ¼ 1;F
N
i ¼ 1 >, then the conditional probability

of response pattern j, given that the correct answer to an
item is “yes,” is

p jj1ðqÞ ¼ ΠN
i¼1H

Xij
i ð1� HiÞð1�XijÞ ð1Þ

By analogy, given that the correct answer is “no,” the
conditional probability of pattern j is

p jj0ðqÞ ¼ ΠN
i¼1F

Xij
i ð1� FiÞð1�XijÞ ð2Þ

Thus, the unconditional probability of response pattern j is

pjðqÞ ¼ PZp jj1ðqÞ þ ð1� PZÞp jj0ðqÞ: ð3Þ

An important special case of the GCM is based on the
assumption that hits and false alarms of the informants depend
(1) on their competencies Di to detect a target item or a lure
item and (2) on their response tendencies gi to respond “yes”
in the same way as is assumed in the so-called two-high
threshold (2HT) model of recognition (Snodgrass & Corwin,
1988). Hence, we call this version of the GCM the two-high
threshold general Condorcet model (2HT-GCM). According
to the 2HT-GCM, informant i knows the true answer key and
responds correctly with probability Di to each item.
However, if the answer key is unknown with probability
1 - Di, informant i guesses “yes” with probability gi and “no”
with probability 1 - gi. For the sake of convenience, we will
henceforth refer to Di as the competence parameter and gi as
the response tendency parameter. The standard GCM and the
2HT-GCM are equivalent, provided that Hi ≥ Fi holds for all
i = 1, …, N. In this case,

Di ¼ Hi � Fi ð4Þ

and

gi ¼ Fi

1� Hi þ Fi
ð5Þ

The order restriction that false alarms must not exceed
hits adds to the complexity of the 2HT-GCM, as
compared with the unrestricted GCM. Therefore, the
2HT-GCM is computationally more intensive than the
GCM. However, the competence and response tendency
parameters of the 2HT-GCM are easier to interpret than
hits and false alarms of the unconstrained GCM.
Obviously, arguments in favor of each model variant
exist.

The factor-analytic estimation procedure

The most widely used estimation procedure for the GCM is
based on factor analysis (Batchelder & Romney, 1988).
This procedure employs a restricted version of the GCM
assuming gi = .5 for each informant i = 1, …, N. In a first
step, the response matrix Xik is transformed into a so-called
matching score for each possible pair of informants. The
matching score for informants i and l is simply the
proportion of matching responses in Xik and Xlk across all
items k = 1, …, M. Computation of matching scores for all
possible pairs of informants results in a N × N matching
score matrix. In the second step, factor analysis is
performed on the matching score matrix. Because the
main diagonal of the matching score matrix is of no
interest in consensus analysis, Batchelder and Romney
(1988) suggested the minimum residual method for factor
analysis (Comrey, 1962), which ignores the main diagonal.
Batchelder and Romney (1988) showed that the factor
loadings of the first unrotated factor estimate the informants’
competencies, bDi, provided that gi = .5, for all informants
i = 1, …, N.

Although the factor-analytic approach to consensus
analysis is easily applied in practice and, therefore, quite
popular, there are three disadvantages to this procedure.
First, the factor-analytic procedure relies on bivariate
associations between informants as represented in the
matching score matrix. It ignores possible higher-order
associations between informants. For example, triple-
order associations may occur when the degree of
correspondence between the answers of two informants
depends on the answers of a third informant. Second,
while the assumption of homogeneous and neutral
response tendencies (i.e., gi = .5) may be adequate in
many cases, it may be inadequate in others. There is no
way to test this critical assumption in the factor analysis
framework. Third, the factor-analytic approach relies on a
very mild goodness-of-fit criterion. Fit is considered
acceptable whenever factor analysis yields a one-factor
solution, a criterion for which a formal test has not yet
been developed.
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The maximum likelihood estimation procedure

If we denote the observed frequency of response pattern j
across items by cj, then the likelihood function of the data
under the GCM is

L cJj¼1; q
� �

¼ M !ΠJ
j¼1

pjðqÞcj
cj!

: ð6Þ

Hu and Batchelder (1994) developed a version of the
EM algorithm (Dempster, Laird, & Rubin, 1977) that
provides an estimate of θ corresponding to at least a local
maximum in the likelihood function (6) for a given set of
observed frequencies cj, j = 1, …, J. CAML uses Hu and
Batchelder’s (1994) EM algorithm to estimate the param-
eters of the GCM.

We implemented the unrestricted GCM in CAML to
avoid the computational complexity of the 2HT-GCM.
Thus, CAML first estimates hit and false alarm rates
according to the unrestricted GCM. Subsequently, compe-
tence and response tendency estimates are derived by
inserting maximum likelihood estimates of hit and false
alarm rates in Eqs. 4 and 5. Note that the resulting Di

estimates may exceed the interval 0 ≤ Di ≤ 1, i = 1, …, N.
We return to this issue below.

The GCM as defined by Eqs. 1–3 is also known as the
latent class model with two latent classes. However, in
contrast to latent class models that assign respondents to
latent classes (Goodman, 1974; Lazarsfeld & Henry, 1968),
the GCM assigns items to latent classes. These item classes
correspond to the two values of the answer key (Batchelder
& Romney, 1988). Because latent class models are special
cases of multinomial processing tree (MPT) models
(Batchelder & Riefer, 1999; Erdfelder et al., 2009), the
GCM can, of course, also be seen as a special form of MPT
models. This perspective has many computational advan-
tages. In fact, most of the methods used in CAML are based
on the MPT modeling approach (Hu & Batchelder, 1994;
Riefer & Batchelder, 1988).

Model fit and model selection

Goodness of fit of the GCM can be evaluated using power
divergence statistics (Read & Cressie, 1988)—for example,
the well-known likelihood ratio statistic G2 or Pearson’s X2.
Because of the models’ complexity, however, assessing
model fit is a nontrivial exercise. Recall that the GCM
captures 2N possible response patterns across N informants.
Hence, the number of possible response patterns is typically
much larger than M, the number of observations (i.e.,
items). The GCM with 30 informants, for example,
comprises more than a billion possible response patterns.
By implication, even if the data set includes several

hundred items, many data categories will remain empty.
Hence, the boundary conditions for using asymptotic chi-
square distributions as reference distributions for the power
divergence statistics are not met (Read & Cressie, 1988).
One way to cope with this problem is estimating the exact
distributions using the parametric bootstrap (Collins, Fidler,
Wugalter, & Long, 1993; Langeheine, Pannekoek, & van de
Pol, 1996). Parametric bootstrapping (Efron, 1982)
involves Monte Carlo sampling from a population model
using maximum likelihood estimates based on the observed
sample as parameters. For each Monte Carlo sample, the
GCM is fitted again. The empirical distribution of the
Monte Carlo fit statistics can then be used as an
approximation to the exact distribution under the null
hypothesis.

As an additional measure of model fit, CAML provides
ΔBIC ¼ BICðH0Þ � BICðH1Þ, where BIC(H1) is the
Bayesian information criterion for the saturated model
producing perfect fit and BIC(H0) is the BIC value for the
fitted model (e.g., Carlin & Louis, 1996). If J denotes the
number of nonredundant response patterns, J - 1 parameters
are required in the saturated model. The GCM, in contrast,
includes 2N + 1 parameters only. Hence,

ΔBIC ¼ G2 þ logM ½ð2N þ 1Þ � ðJ � 1Þ�:

The smaller ΔBIC is, the better the fit of the GCM.
Negative values of ΔBIC clearly support the GCM over the
saturated model. As compared with power divergence
statistics such as G2, the ΔBIC fit criterion has the
advantage of being less dependent on sample size and of
controlling for the number of parameters in the model
(Read & Cressie, 1988).

The likelihood ratio statistic G2 can also be used to
compare nested models—that is, pairs of models with one
model resulting from one or more parameter constraints
applied to the other model. Possible restrictions include
equality constraints and parameter fixations. An equality
constraint of special importance for the GCM is Hi = 1 - Fi

for i = 1, …, N. If applied to the 2HT-GCM, this constraint
is equivalent to gi = .5 for i = 1, …, N. This can be seen by
replacing Hi with 1 - Fi in Eq. 5 and solving for gi. If this
restriction holds, informants favor neither of the two
response options in cases of response uncertainty. As was
outlined in the previous section, this assumption is implied
by the factor-analytic approach to consensus analysis
(Batchelder & Romney, 1988). By evaluating the difference
ΔG2 ¼ G2

rGCM � G2
uGCM of the likelihood ratio statistics

for the restricted GCM assuming Hi = 1 - Fi for i = 1, …, N
G2

rGCM

� �
and the unrestricted GCM G2

uGCM

� �
, it is possible

to test this crucial assumption of the factor-analytic
approach statistically. Simulation studies indicate that, in
contrast to the global model fit statistics G2

uGCM and G2
rGCM,
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the difference statistic ΔG2 is approximately chi-square
distributed even in cases of sparse data (Agresti & Yang,
1987).

Measures of consensus

Consensus as defined in consensus theory is characterized
by two features (Romney et al., 1986). First, consensus
requires that informants share the same answer key. Second,
the informants’ competence parameters must be clearly
positive. The rationale behind the latter requirement is that
informants who do not make use of the answer key are
unable to share it. On the basis of this definition of
consensus, a measure of consensus is easily derived using
CAML.

Recall that CAML employs a two-step procedure. First,
hit and false alarm rates are estimated by applying the EM
algorithm (Hu & Batchelder, 1994) to the unrestricted
GCM. We denote these maximum likelihood estimates bybHi and bFi, respectively. Second, competence and response
tendency parameter estimates are derived by replacing Hi

and Fi in Eqs. 4 and 5 by bHi and bFi, respectively. In other
words, CAML does not enforce bHi � bFi, i = 1, …, N, in
the 2HT-GCM. Hence, the competence parameter estimate
of informant i will be negative whenever Step 1 of the
CAML algorithm results in bHi < bFi.

Because consensus implies positive competence param-
eters, the occurrence of at least one negative competence
parameter estimate indicates lack of consensus (Romney et
al., 1986). In fact, negative competence parameter estimates
have frequently been used as measures of lack of consensus
in the relevant literature (e.g., Bailenson et al., 2002;
Johnson et al., 1992; Majid et al., 2008; Malt et al., 1999;
Medin et al., 2006; Shafto & Coley, 2003).

Confidence intervals

Within the MPT framework (Hu & Batchelder, 1994), the
Fisher information matrix can be used to obtain confidence
intervals of parameter estimates. The main diagonal of the
inverted Fisher information matrix includes variances of the
parameter estimates (Efron & Hinkley, 1978). Because the
asymptotic distribution of maximum likelihood estimates is
Gaussian, these variance estimates can be used to construct
confidence intervals. Hu and Batchelder (see also Moshagen,
2010) derived a closed form solution of the observed Fisher
information for MPT models that is used in CAML.

There are, however, some disadvantages to using the
Fisher information to determine confidence intervals.
Because of small numbers of items, the number of
observations is often small. Therefore, the estimate of the
Fisher information may not be a good approximation to the
true Fisher information (Hu, 1999). Other possible short-

comings include singularity of the Fisher matrix, negative
variance estimates, and confidence intervals outside the
interval [0, 1] that often occur in case of sparse data
(Moshagen, 2010).

To avoid these problems, CAML additionally provides
confidence intervals using the parametric bootstrap proce-
dure (Efron, 1982). The rationale behind the parametric
bootstrap is that the unknown distribution of parameter
estimates can be approximated by repeatedly drawing
Monte Carlo samples from the population model on the
basis of the observed maximum likelihood estimates. The
parameter of interest is estimated for each of the Monte
Carlo samples. The sampling distribution of these estimates
can then be used to extract some measures of variability,
such as the standard error or ð1� aÞ � 100% confidence
intervals. It is also possible to obtain confidence intervals
for the competence and response tendency parameters of
the 2HT-GCM. Keep in mind, however, that these intervals
may exceed the unit interval because bHi � bFi is not
enforced by the estimation algorithm.

Answer keys

Once point estimates of the model parameters are available,
it is easy to estimate answer keys using Eqs. 1 and 2. The
answer key estimate for item k, given the nonredundant
response pattern j, is bZk ¼ 1 if p jj1ðbqÞPZ > p jj0ðbqÞð1� PZÞ
and bZk ¼ 0 otherwise.

Shortcomings of existing software in the context
of consensus analysis

As was outlined above, the GCM can be seen as an MPT
model, as a latent class model, and as factor-analytic model.
We will therefore discuss software for these model classes
as possible alternatives to CAML. However, note that the
MPT and latent class analysis software discussed below was
developed for a much broader range of applications than
CAML. Consequently, the issues discussed here are limited
to consensus analysis and do not necessarily generalize to
other applications of this software.

Despite the fact that CAML uses the MPT framework
and employs the same version of the EM algorithm (Hu &
Batchelder, 1994) also used in standard MPT software (Hu
& Phillips, 1999; Moshagen, 2010; Rothkegel, 1999; Stahl
& Klauer, 2007), consensus analysis is often unfeasible for
the latter programs. For example, existing MPT software
requires that the probabilities of all possible 2N response
patterns must be represented in the form of model
equations. This poses serious problems. As was outlined
above, the GCM for 30 informants includes more than a
billion model equations. Obviously, it is impossible to
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communicate these equations to standard MPT software.
CAML solves this problem by making use of the fact that
the EM algorithm of Hu and Batchelder (1994) ignores
model equations of response patterns with zero frequency.
By implication, only J model equations—one for each of
the nonredundant response patterns—need to be considered
(see Eq. 3). CAML makes use of this incomplete but
computationally sufficient set of model equations. Alternative
MPT software, however, requires the full set of equations, an
approach that is feasible for small N only.

Another concern is the lack of procedures to deal with
sparse data in most of the currently available programs for
MPT models. In such cases, the large-sample chi-square
approximation to the likelihood ratio statistic G2 does not
work appropriately (Collins et al., 1993; Langeheine et al.,
1996), and the estimate of the Fisher information matrix
lacks precision (Hu, 1999). Bootstrap procedures that
remedy these problems are not implemented in most of
the software mentioned above (but see Moshagen, 2010, for
an exception).

Furthermore, standard latent class software does not
provide patterns of parameter restrictions that reflect
meaningful variants of the GCM. For example, the
assumption that response tendencies are homogeneous is
conceptually interesting and practically easy to accomplish
in CAML, but not in poLCA (Linzer & Lewis, 2010).

A minor issue with latent class software arises from the fact
that the GCM is not globally identified. The reason for this is
that the labeling of the latent classes (i.e., the values of the
answer key) does not affect the expected frequencies under the
model. In other words, the interpretation PZ = P(Z = 1)
predicts the same response patterns as PZ = P(Z = 0). By
implication, the estimation process may yield parameter
estimates that correspond to either of the two possible
interpretations of PZ (Batchelder & Romney, 1988). To

obtain unique estimates, we can make use of the fact that the
average hit probability should exceed the average false alarm
probability. CAML automatically chooses the interpretation
of PZ that complies with this constraint. In contrast, latent
class software may produce solutions that correspond to both
interpretations and, thus, does not guarantee unique estimates.

In addition to the software discussed above, the program
ANTHROPAC (Borgatti, 1996) is able to perform consen-
sus analysis on the basis of the factor-analytic method.
ANTHROPAC has a broader range of applications than
does CAML and provides additional data analysis methods
often used in anthropology. However, the above-mentioned
disadvantages of the factor-analytic approach to consensus
analysis also apply to ANTHROPAC. For example, this
program requires the assumption of homogeneous and
neutral response tendencies (i.e., gi = .5), does not provide
a test of this assumption and also does not provide a
technically sound statistical test of the GCM. In sum, as
compared with the software discussed in the present
section, we think that the advantages of CAML warrant
and necessitate the introduction of a new consensus
analysis tool.

The software

CAML requires the response matrix Xik containing the
responses of each informant to each item as input. Table 1
depicts the responses of four informants to 16 old–new
questions in a recognition experiment. We will turn to the
explanation of the data set in more detail below. The lower
half of Table 1 illustrates the corresponding R input to
define the response matrix—henceforth, abbreviated as X.

To apply consensus analysis to X, we implemented the
function CAML(X, g, eps, runs, max.iter, fisher, boot.runs,

Table 1 The answers of four informants (I1–I4) to 16 old–new questions (upper half) and the corresponding definition of a response matrix
named “X” in R (lower half)

Item

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I1 new new old new new old new old new new old new old old old old

I2 new new new new new new new new old old old old old old new new

I3 old new new new new old new old old old old old old old old old

I4 new old new new new old new new old old old old old old old old

X <− rbind (

c(0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1),

c(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0),

c(1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1),

c(0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)

)
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alpha). All function arguments except X have default
values. Hence, it is sufficient to enter CAML(X) for basic
consensus analysis. This will provide the most important
information: estimates of informant competencies, response
tendencies, the answer key, and a measure of consensus
based on negative competence estimates. All function
arguments, their meaning, their admissible values, and their
default values are listed in Table 2.

To assess model fit, the output also contains the
likelihood ratio and the information criteria AIC (Akaike,
1973) and BIC (Schwarz, 1978). In addition, the BIC
difference between the saturated model and the fitted model
(ΔBIC) is included in the output. As already explained in
more detail above, due to the sparseness of data, the
likelihood ratio statistic G2 usually does not follow a chi-
square distribution if the model holds. Hence, the exact
distribution is estimated using the parametric bootstrap. The
argument boot.runs specifies the number of bootstrap
samples used to determine the p-value for the observed
G2 statistic. Large values of boot.runs will provide more
precise estimates of p, especially if p is small, but also will
increase computation time. The number of bootstrap
samples necessary to achieve a predefined precision can
be calculated with the procedure developed by Andrews
and Buchinsky (2000).

As was outlined above, the factor-analytic procedure
requires homogeneous and neutral guessing parameters;
that is, all informants are equally inclined to respond “yes”
or “no” if the correct response is unknown (Batchelder &
Romney, 1988; Romney et al., 1986). The maximum
likelihood approach to consensus analysis does not require
this constraint. In CAML, it is possible to test the
hypothesis that response tendencies are homogeneous using
the argument g. This argument accepts Boolean values T or
F, meaning true and false, respectively. If g = T, the EM
algorithm is applied to both the general, unrestricted GCM
and the restricted GCM assuming gi = .5 for all informants
i = 1, …, N. Moreover, the output includes the likelihood
ratio difference statistic ΔG2 and its critical value based on

the assumption thatΔG2 is chi-square distributed. The Type
I error probability is defined by the argument alpha. The
necessary sample size to achieve a certain Type II error rate
or the achieved Type II error rate, given a certain sample
size, can be computed using power analysis software such
as the chi-square procedure of G*Power 3.1 (Faul,
Erdfelder, Buchner, & Lang, 2009).

CAML users may choose between different features of the
estimation algorithm, such as the criterion of convergence eps
and the maximum number of iterations of the EM algorithm
max.it. The argument runs allows changing the number of
runs of the EM algorithm from different random start values.
A lower number of runs decreases computation time but
increases the risk that the algorithm may not converge to the
global maximum of the likelihood function.

Two arguments define the type of confidence interval
reported by CAML. The argument fisher is a Boolean
variable. fisher = T provides confidence intervals based on
the inverse of the observed Fisher information. As was
mentioned earlier, this approach might fail if the Fisher
information matrix is singular or if one of the variance
estimates is negative. In this case, CAML will provide a
warning message, and confidence intervals based on the
Fisher information will not be provided. Alternatively,
confidence intervals can be obtained by setting the argument
boot.runs to a value larger than zero. CAML will conduct as
many iterations of the parametric bootstrap procedure as is
specified in the boot.runs argument to determine confidence
intervals for the parameters. Again, both the precision of the
confidence interval estimates (Andrews & Buchinsky, 2000)
and the time necessary to complete the analysis increase with
the number of iterations. Last but not least, the desired
confidence level can be determined using the alpha
argument. For example, the default value of alpha = .05
produces ð1� aÞ � 100 —that is, 95% confidence intervals.

To illustrate the use of CAML, we analyzed the response
matrix X shown in Table 1. The output generated by CAML
based on the command CAML(X, runs = 3, g = T, boot.runs =
100) is depicted in Fig. 1. The first section of the output lists

Table 2 All arguments for the function CAML, as well as their meaning, admissible values, and default values

Argument Meaning Admissible Values Default Value

X N×M response matrix 0, 1 –

g Should CAML test if response tendencies are homogeneous? (F = False, T = True) F, T F

eps Stopping rule for the EM algorithm Positive reals 10-10

runs Number of independent repetitions of the EM algorithm with new starting values Positive integers 5

max.iter Maximum amount of iterations for the EM algorithm Positive integers 1.000

fisher Should confidence intervals based on the Fisher information matrix be computed?
(F = false, T = true)

F, T F

boot.runs Number of bootstrap iterations to determine confidence intervals Nonnegative integers 0

alpha α for the likelihood ratio tests and the bootstrapped confidence intervals (0, 1) .05
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the number of informants, the number of observations, and
the number of model parameters.

Next, the output lists the log-likelihoods for the three
runs of the EM algorithm defined by the argument runs = 3,
along with the number of iterations required to reach the
criterion of convergence. By definition, parameter estimates
of the run with the largest log-likelihood (marked * in the
output) are the maximum likelihood estimates.

Following the information criteria, the observed likeli-
hood ratio statistic G2 is listed along with its upper-tail
probability under the null hypothesis. Because of the
argument (g = T), the output also includes the likelihood

ratio difference statistic ΔG2 along with the critical value
with respect to the null hypothesis gi = .5, i = 1, …, N.

The parameter estimates of PZ (denoted p in the output),
hits, false alarms, competencies (i.e., D), and response
tendencies (i.e., g) are listed below the fit indices. The rows
labeled “pe” include point estimates of the parameters.
Because the default value of alpha is .05, the rows
following the point estimates contain estimates of the .025
and .975 quantiles of the sampling distribution—that is, the
95% confidence interval.

The last part of the output comprises answer key
estimates for each of the 16 items. The meanings of “0”

Fig. 1 Output produced by
CAML for the data matrix pre-
sented in Table 1 after typing
CAML(X, runs = 3, g = T, boot.
runs = 100) in the R console
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and “1” are defined by the user when the dichotomous
responses are coded. In the present case, 0 represents “new”
and 1 represents “old” (see Table 1).

A validation study of the general Condorcet model

Model parameters should reflect the psychological variables
they are supposed to measure. Consequently, the validity of
a model hinges on the validity of all its parameters. In the
context of MPT models, parameter validity is typically
tested by specifying experimental manipulations that should
affect specific psychological processes as captured by
specific parameters (Batchelder & Riefer, 1999; Erdfelder
et al., 2009). If the model is valid, each experimental
manipulation should selectively affect the parameter of
interest, but not others. This approach has found wide-
spread use in cognitive psychology (Bayen, Murnane, &
Erdfelder, 1996; Buchner, Erdfelder, Steffens, & Martensen,
1997; Buchner, Erdfelder, & Vaterrodt-Plünnecke, 1995;
Chechile & Meyer, 1976; Erdfelder & Buchner, 1998;
Klauer, Stahl, & Erdfelder, 2007; Klauer & Wegener, 1998;
Nadarevic & Erdfelder, 2011; Steffens, Buchner, Martensen,
& Erdfelder, 2000). To our knowledge, however, a test of
the GCM’s validity has not been attempted so far.

We tested the validity of the 2HT-GCM in a recognition
memory experiment. The primary reason for choosing this
paradigm is that the answer key (i.e., the old–new-status of
each item) is known in this application and can thus be used
as an additional criterion of validity. Furthermore, the data
structure perfectly matches the requirements of consensus
analysis; that is, each of N informants responds to a set of
M dichotomous test items. We predicted that the study time
provided for each item in the study phase should affect the
competence parameters of the 2HT-GCM selectively: The
more time participants have to study the items, the higher
their subsequent recognition competence. Similarly, the
proportion of old items in the recognition test should affect
the response tendency parameters selectively: The higher
the proportion of old items in the test, the larger the bias to
respond “old.” Last but not least, the answer key estimated
by the 2HT-GCM should be very similar to the actual
answer key underlying the data.

Despite the fact that applications of consensus analysis
typically refer to field studies, rather than to controlled
laboratory environments (e.g., Romney et al., 1987), the
experimental validation study presented here is essential for
all applications of consensus analysis. Since the GCM, like
any model, includes assumptions, it cannot be taken for
granted on a priori grounds that consensus analysis works
as intended. Hence, it needs to be tested empirically
whether consensus analysis is actually able to uncover
answer keys, latent competences, and response tendencies

that correspond to the true underlying answer keys,
competences, and response tendencies. Only if the validity
of the GCM can be established experimentally is its
application to field data warranted.

Method

Participants Thirty-two students at the University of
Mannheim, with a mean age of 22.25 years (SD = 2.64),
participated as part of their study requirements. Of the
participants, 57.5% were female.

Design We manipulated study time for each item (short vs.
long) and the base rate of old items in the test phase of the
experiment (low vs. high) in a between-subjects fashion.

Materials and procedure One hundred fifty German nouns
randomly selected from the data base of Hager and
Hasselhorn (1994) served as stimulus material. Ten words
served as primacy and recency buffers and were not
analyzed in the test phase. The remaining words were
randomly divided in two lists of 70 words each. Both lists
equally often served as study list and distractor list,
respectively.

After providing informed consent, each participant was
tested individually at a personal computer. First, the
participants studied one of the word lists. Each study item
appeared at the center of the screen for 4 s (long study
condition) or 0.5 s (short study condition), with an
interstimulus interval of 0.5 s. Subsequently, participants
entered the test phase of the experiment. In the test phase,
the proportion of old items was either 30% (i.e., 30 old
items and 70 new items) in the low-base-rate condition or
70% (i.e. 70 old items and 30 new items) in the high-base-
rate condition. The test items were presented sequentially at
the center of the screen. Two response buttons labeled “old”
and “new” appeared under each test item. After the
participant clicked one of the buttons, the next test item
appeared. The order of items in the study phase and test
phase was randomized for each participant.

Results and discussion

We first estimated the parameters of the standard 2HT
recognition model (Snodgrass & Corwin, 1988). This
model makes use of the actual answer key. As can be seen
in the upper half of Fig. 2, study time significantly affected
competence estimates, F(1, 28) = 23.48, p < .001, η² = .43.
As was expected, the competence estimates in the long
study condition were significantly higher than those in the
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short study condition. In contrast, the study time manipu-
lation did not affect response tendencies, F(1, 28) < 1. In
addition, the high base rate increased the informants’
tendency to respond “old,” in comparison with the low
base rate, F(1, 28) = 12.80, p = .001, η² = .29. The base rate
manipulation did not affect the competence estimates,
F(1, 28) = 3.14, p = .09, η² = .06. The interaction of study
time and base rate was not significant, either for the
competence estimates, F(1, 28) < 1, or for the response
tendency estimates, F(1, 28) = 3.24, p = .09, η2 = .07. To
summarize, the manipulations were successful and affected
the target parameters of the 2HT recognitionmodel selectively.

In the next step, we analyzed the data of the recognition
experiment using CAML. For this purpose, the data had to
be separated into four data sets, because the actual answer
keys differed between study word lists and the two base rate
conditions. Not separating these data would result in a lack
of consensus, since informants would not agree on the
correct response. We thus analyzed four groups of 8 partic-
ipants each. Within each group, half of the participants were
in the long study duration condition, and the other half in
the short study duration condition. Of course, actual answer
keys were ignored in the CAML analyses.

All four groups showed consensus, as indicated by
positive competence estimates. To evaluate model fit, we
generated 10,000 bootstrap samples [i.e., CAML(X, boot.

runs = 10000)] for each data set to determine the p-values
for the observed likelihood ratio statistics under the GCM
null hypothesis. The model fitted three of the four data sets
nicely (p > .1). Given a conventional significance level of
.05, the model failed to fit one of the four data sets (p = .02).
Upon further inspection, we discovered that one of the
informants demonstrated perfect memory, resulting in ex-
treme parameter estimates. Upon exclusion of this informant
from the analysis, the model fitted the data well (p = .33).
Thus, the overall model fit can be considered as good.

As can be seen in the lower half of Fig. 2, the effects of
the experimental manipulations observed for the 2HT-GCM
parameter estimates mirror the results previously reported
for the standard 2HT recognition model. As was expected,
the longer study duration produced higher competence
estimates, as compared with the short study duration
condition, F(1, 28) = 27.09, p < .001, η2 = .48, but did
not affect response tendencies, F(1, 28) = 2.13, p = .16, η2 =
.04. Moreover, informants showed higher tendencies to
respond “old” in the condition with a large base rate of old
items, as compared with the condition with a low base rate,
F(1, 28) = 19.64, p < .001, η2 = .39. In contrast, the base rate
manipulation did not affect competence parameter estimates,
F(1, 28) = 1.16, p = .29, η2 = .02. Again, neither the
interaction with respect to the competence estimates, F(1, 28) <
1, nor the interaction with respect to the response tendency

Fig. 2 Mean (SE) parameter
estimates for the 2-HT model
(upper half) and the 2HT-GCM
(lower half) in a recognition
experiment where the study du-
ration (short vs. long) and the
base rate of old items in the test
phase (30% vs. 70%) were
manipulated
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estimates, F(1, 28) < 1, reached statistical significance. These
results observed at the group means level match those
previously reported for the standard 2HT recognition model
(based on the actual answer keys) almost perfectly.

How well do the parameter estimates of the 2HT
recognition model and the 2HT-GCM agree at the level of
individual informants? There is an almost perfect linear
relationship between the competence estimates of both
models, r = .96, p < .001, as illustrated in the left side of
Fig. 3. This strong correlation does not hold for the
response tendency estimates, r = .33, p = .06. However,
closer inspection of the scatterplot (see the right side of
Fig. 3) revealed that there is a strong linear relationship
between estimates from the two analyses. However, three
outliers at the boundary of the parameter space obscure this
relationship.1 After the exclusion of the three boundary
parameter estimates in Fig. 3, the correlation between the
response tendency estimates of the two model versions is
very high, r = .96, p < .001.

To evaluate the proportion of correctly estimated answer
keys, we compared the answer key estimates resulting from
CAML with the known true status of each item. In addition,
we evaluated the performance of the majority rule. This
model-free rule takes the majority responses as an estimate

of the answer key, ignoring differences in competence
between the informants. On average, CAML estimated
96.25% of the answer key correctly. In contrast, the
majority rule was correct in only 92.25% of the cases.
The high proportions of correctly estimated answer keys
correspond to the results of other studies that also showed
high rates of correspondence (Karabatsos & Batchelder,
2003; Romney et al., 1986).

General discussion

The goal of the present work was to introduce a program
for consensus analysis based on maximum likelihood
estimation and to test the validity of the model underlying
consensus analysis. We employed experimental manipula-
tions that selectively affect competence and response
tendency parameters. In the 2HT-GCM, these parameters
are estimated without any knowledge of the true answer
keys. Nevertheless, the parameter estimates obtained
reflected these manipulations nicely. Furthermore, the
parameter estimates based on consensus analysis almost
perfectly mirrored those of the standard 2HT recognition
model using the actual answer keys. Finally, the answer key
estimates of the GCM corresponded to the true answer
keys. In sum, the GCM was able to recover individual
competence parameters, as well as the true answer keys,
with a very high precision despite the small data set in each
condition (8 participants per condition).

Although the approach to consensus analysis presented
here overcomes some shortcomings of the factor-analytic
procedure, there is one limitation inherent in the CAML
approach itself: The present version of CAML cannot

1 Competence estimates close to 1 render response tendency estimates
unreliable. To illustrate this point, consider a case where the hit rate is
H = .99 and the false alarm rate is F = .01. Eqs. 4 and 5 indicate that
the corresponding competence would be D = .98 and the response
tendency g = .5. By introducing small estimation errors of .01 to both
the hit rate and the false alarm rate, it can be seen that the response
tendency estimate is much more affected than the competence
estimate. More precisely, the response tendency estimate in this
hypothetical case takes on values in [0, 1], whereas the competence
estimate is in [.96, 1.00].

Fig. 3 Scatterplots depicting the relationship between parameter
estimates for the 2-HT model and the 2HT-GCM in a recognition
experiment where the study duration (short vs. long) and the base rate

of old items in the test phase (30% vs. 70%) were manipulated.
Competence estimates are depicted on the left, and response tendency
estimates on the right. Regression lines exclude boundary estimates
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account for possible differences in item difficulties. Karabatsos
and Batchelder (2003) presented a promising approach to
consensus analysis based on the Markov chain Monte Carlo
method that yields estimates of the item difficulties in
addition to the 2HT-GCM parameters. Currently, we do not
see how the estimation of item difficulties can be incorporat-
ed into the procedure presented above. However, in a
simulation study, we found that the procedure implemented
in CAML outperforms the Markov chain Monte Carlo
approach with respect to tests of consensus and yields
comparable estimates of answer keys and informants’
competencies even when difficulties vary between items
(Aßfalg & Erdfelder, 2011).

Another possible limitation of CAML is that it is
currently available for the R software platform only.
Although software written in R was very successful in
recent years (e.g., Bulté & Onghena, 2008; Grassie et al.,
2010; Nimon et al., 2008), the user interface of R might not
appeal to everyone. We intend to address this limitation in
future versions of CAML.

In a nutshell, CAML provides a powerful approach to
consensus analysis that avoids limitations and simplifying
assumptions of other procedures developed for the same
purpose. We therefore believe that CAML is the most
promising approach to consensus analysis for dichotomous
response data currently available.

Author Note We are grateful to Morten Moshagen and Dennis
Boywitt for helpful comments on earlier versions of the manuscript.
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