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Course Objectives

What is this course about?

I This course is designed for self-study

I Recap of your high-school / Abitur knowledge in mathematics.

I Introduction to the fundamentals in math that are necessary
for your understanding of statistics and game theory.

I Overcome possible reservations against the use of
mathematics.

I A refresher and starting point for future individual learning.

What is this course not about?

I It is not a mathematical freak show!

I It does not introduce advanced mathematical techniques.
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Course Objectives

Instructions

1. Check the accompanying syllabus

2. Work through the slides

3. If you are not familiar with one of the topics and/or feel like
you need more detailed information to understand the
material:
I Read chapters from the recommended books in the syllabus
I Watch video tutorials suggested in the syllabus

4. Work through the exercise sheets

5. Check your results with the solution sheets

6. In case of questions or feedback on the material contact
cgueiros@uni-mannheim.de
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Course Objectives

Why is math important to social scientists?

I Mathematics allows for orderly and systematic
communication. Ideas expressed mathematically can be more
carefully defined and more directly communicated than
narrative language, which is susceptible to vagueness and
misinterpretation.

I Mathematics is an effective way to describe and model our
world.

Applications

I Game Theory, Decision Theory

I Computer Simulation, Agent-Based Modeling

I Statistics, Econometrics

I Empirical Analyses in any field
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Course Objectives

Mathematical confidence: Many students of mathematics are
hindered by false beliefs about the subject and/ or themselves.
Here are some things to keep in mind if you find mathematics
daunting:

I Every person is capable of doing mathematics.

I Being good at mathematics doesn’t mean being fast at
mathematics.

I If you believe that you can learn, you will learn more.

I If you struggled maths at school, you aren’t doomed to
struggle forever.

I Mathematics is learned by doing, not reading/ listening. It’s
essential to try. Mistakes are good for your brain.
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Syllabus

I Set Theory (The Basics)
I introduction, functions

II Analysis/Calculus
I derivatives, optimization, integration

III Linear Algebra
I vectors, matrices

IV Probability Theory
I combinatorics, conditional probabilities, distributions
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General Readings

Recommended:
General

I Gill (2006): Essential Mathematics for Political and Social
Research.

I Moore/Siegel (2013): A Mathematics Course for Political and
Social Research. An introductory mathematics course aimed
at social scientists, provides good intuitions for basic concepts
and applications. It has accompanying video lectures on
Youtube.

I Simon/Blume (1994) A comprehensive treatment of
mathematics for students of economics for both
undergraduate and more advanced level.

I Sydsaeter/Hammond (2008) Another standard mathematics
textbook for economics undergraduates.
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Specific Readings

I Calculus

I Spivak (2006) A classic standard textbook for a first class in
Calculus for mathematics students at undergraduate level.

I Probability Theory

I DeGroot/Schervish (2011) A comprehensive standard
treatment of probability and statistics for mathematics
undergraduate students. Intuitive and (relatively) rigorous at
the same time with lots of exercises.

I Linear Algebra

I Lay (2011) A standard introduction for mathematics
undergraduates.

I The Matrix Cookbook1

An overview over some more advanced matrix calculus.

1http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/

pdf/imm3274.pdf
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Set Theory
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Set Theory (The Basics)

Resources:

I Moore/Siegel: Chapter 1

I Gill: Chapter 1
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Motivation

Explanations of political outcomes often begin with the
presumption that such outcomes are the result of purposive
decisions made by relevant individuals (e.g. voters, legislators) or
groups of individuals (e.g. political parties, interest groups, nation
states)
Fundamental to these kind of explanations are the concepts of
‘choice’ and ‘preferences’.
Set Theory is fundamental to the formalization of these concepts.
Set Theory is fundamental to the understanding of many other
fields of mathematics, e.g. the concept of ‘functions’.
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What Is a Set?

Definition (Set)

A set is a collection of distinct objects, where the objects therein
are called elements or members.

For example A = {1, 2, 3} is a set, and 1 is an element of A (write
1 ∈ A), whereas 4 is not an element of A (4 /∈ A).

If a set does not contain any elements, we call it an empty set.
The shorthand for an empty set is ∅ or {}.
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Example: Sets of Numbers

Symbol Explanation Example

N set of natural numbers 1, 2, 3, 4, . . .
Z set of integers −2,−1, 0, 1, 2, . . .
Q set of rational numbers (fractions) − 9

7
,−1, 0, 1

2
, 1, . . .

R set of real numbers fractions plus e.g. π or e
R+ set of positive real numbers
C set of complex numbers

√
−1
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Relations of Sets

A set itself can, furthermore, be part of another set. E.g.
A = {1, 2, 3} is part of B = {1, 2, 3, 4}. We then say that A is a
subset of B and write A ⊆ B. In particular it is true for every set
A that A ⊆ A.

If A is a subset of B, but not equal to B (like in the example
above), we call A a proper or strict subset of B and write A ⊂ B.

If two sets do not have any element in common, these sets are said
to be disjoint. E.g. A = {1, 2, 3} and C = {4, 5} are disjoint.
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Operations on Sets I

We can visualize operations on sets using so called Venn
diagrams.

2

1.7

A ∪B = {x : x ∈ A ∨ x ∈ B} (A union B)

A ∩B = {x : x ∈ A ∧ x ∈ B} (A intersection B)

A \B = {x : x ∈ A ∧ x /∈ B} (A minus B)

A
B = (A \B) ∪ (B \A) (symmetric difference)

If all the sets in question are contained in some
“universal” set Ω, one often writes Ω \A as

Ac = {x : x /∈ A} (the complement of A)

Basic set operations.
A \B is called the differ-
ence between A and B.
An alternative symbol
for Ac is �A.

A

B

Ω

A ∪B

A

B

Ω

A ∩B

A

B

Ω

A \B

A

Ω

Ac

A

B

Ω

A�B

1.8

(A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A
B = (A ∪B) \ (A ∩B)

(A
B)
 C = A
 (B 
 C)

A \ (B ∪ C) = (A \B) ∩ (A \ C)

A \ (B ∩ C) = (A \B) ∪ (A \ C)

A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

Important identities
in set theory. The last
four identities are called
De Morgan’s laws.

1.9
A1 ×A2 × · · · ×An =

{(a1, a2, . . . , an) : ai ∈ Ai for i = 1, 2, . . . , n}
The Cartesian product of
the sets A1, A2, . . . , An.

1.10 R ⊂ A×B
Any subset R of A × B
is called a relation from
the set A into the set B.

1.11
xRy ⇐⇒ (x, y) ∈ R

x/Ry ⇐⇒ (x, y) /∈ R

Alternative notations
for a relation and its
negation. We say that
x is in R-relation to y if
(x, y) ∈ R.

1.12

• dom(R) = {a ∈ A : (a, b) ∈ R for some b in B}
= {a ∈ A : aRb for some b in B}

• range(R) = {b ∈ B : (a, b) ∈ R for some a in A}
= {b ∈ B : aRb for some a in A}

The domain and range
of a relation.
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Operations on Sets II

A union contains all elements that are either in A or B or in both.
Formally, this is A ∪ B = {x |x ∈ A or x ∈ B or both}.

2

1.7

A ∪B = {x : x ∈ A ∨ x ∈ B} (A union B)

A ∩B = {x : x ∈ A ∧ x ∈ B} (A intersection B)

A \B = {x : x ∈ A ∧ x /∈ B} (A minus B)

A
B = (A \B) ∪ (B \A) (symmetric difference)

If all the sets in question are contained in some
“universal” set Ω, one often writes Ω \A as

Ac = {x : x /∈ A} (the complement of A)

Basic set operations.
A \B is called the differ-
ence between A and B.
An alternative symbol
for Ac is �A.

A

B

Ω

A ∪B

A

B

Ω

A ∩B

A

B

Ω

A \B

A

Ω

Ac

A

B

Ω

A�B

1.8

(A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A
B = (A ∪B) \ (A ∩B)

(A
B)
 C = A
 (B 
 C)

A \ (B ∪ C) = (A \B) ∩ (A \ C)

A \ (B ∩ C) = (A \B) ∪ (A \ C)

A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

Important identities
in set theory. The last
four identities are called
De Morgan’s laws.

1.9
A1 ×A2 × · · · ×An =

{(a1, a2, . . . , an) : ai ∈ Ai for i = 1, 2, . . . , n}
The Cartesian product of
the sets A1, A2, . . . , An.

1.10 R ⊂ A×B
Any subset R of A × B
is called a relation from
the set A into the set B.

1.11
xRy ⇐⇒ (x, y) ∈ R

x/Ry ⇐⇒ (x, y) /∈ R

Alternative notations
for a relation and its
negation. We say that
x is in R-relation to y if
(x, y) ∈ R.

1.12

• dom(R) = {a ∈ A : (a, b) ∈ R for some b in B}
= {a ∈ A : aRb for some b in B}

• range(R) = {b ∈ B : (a, b) ∈ R for some a in A}
= {b ∈ B : aRb for some a in A}

The domain and range
of a relation.

If A = {1, 2, 3} and B = {3, 4}, then A ∪ B = {1, 2, 3, 4}.
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Operations on Sets III

An intersection contains all elements that are both in A and B.
Formally, this is A ∩ B = {x |x ∈ A and x ∈ B}.

2

1.7

A ∪B = {x : x ∈ A ∨ x ∈ B} (A union B)

A ∩B = {x : x ∈ A ∧ x ∈ B} (A intersection B)

A \B = {x : x ∈ A ∧ x /∈ B} (A minus B)

A
B = (A \B) ∪ (B \A) (symmetric difference)

If all the sets in question are contained in some
“universal” set Ω, one often writes Ω \A as

Ac = {x : x /∈ A} (the complement of A)

Basic set operations.
A \B is called the differ-
ence between A and B.
An alternative symbol
for Ac is �A.

A

B

Ω

A ∪B

A

B

Ω

A ∩B

A

B

Ω

A \B

A

Ω

Ac

A

B

Ω

A�B

1.8

(A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A
B = (A ∪B) \ (A ∩B)

(A
B)
 C = A
 (B 
 C)

A \ (B ∪ C) = (A \B) ∩ (A \ C)

A \ (B ∩ C) = (A \B) ∪ (A \ C)

A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

Important identities
in set theory. The last
four identities are called
De Morgan’s laws.

1.9
A1 ×A2 × · · · ×An =

{(a1, a2, . . . , an) : ai ∈ Ai for i = 1, 2, . . . , n}
The Cartesian product of
the sets A1, A2, . . . , An.

1.10 R ⊂ A×B
Any subset R of A × B
is called a relation from
the set A into the set B.

1.11
xRy ⇐⇒ (x, y) ∈ R

x/Ry ⇐⇒ (x, y) /∈ R

Alternative notations
for a relation and its
negation. We say that
x is in R-relation to y if
(x, y) ∈ R.

1.12

• dom(R) = {a ∈ A : (a, b) ∈ R for some b in B}
= {a ∈ A : aRb for some b in B}

• range(R) = {b ∈ B : (a, b) ∈ R for some a in A}
= {b ∈ B : aRb for some a in A}

The domain and range
of a relation.

If A = {1, 2, 3} and B = {3, 4}, then A ∩ B = {3}.
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Operations on Sets IV

Let there be a universal set Ω with the subset A. The
complement of A is every element of Ω that is not an element of
A.
Formally, this is AC = {x |x /∈ A (and x ∈ Ω)}.

2

1.7

A ∪B = {x : x ∈ A ∨ x ∈ B} (A union B)

A ∩B = {x : x ∈ A ∧ x ∈ B} (A intersection B)

A \B = {x : x ∈ A ∧ x /∈ B} (A minus B)

A
B = (A \B) ∪ (B \A) (symmetric difference)

If all the sets in question are contained in some
“universal” set Ω, one often writes Ω \A as

Ac = {x : x /∈ A} (the complement of A)

Basic set operations.
A \B is called the differ-
ence between A and B.
An alternative symbol
for Ac is �A.

A

B

Ω

A ∪B

A

B

Ω

A ∩B

A

B

Ω

A \B

A

Ω

Ac

A

B

Ω

A�B

1.8

(A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A
B = (A ∪B) \ (A ∩B)

(A
B)
 C = A
 (B 
 C)

A \ (B ∪ C) = (A \B) ∩ (A \ C)

A \ (B ∩ C) = (A \B) ∪ (A \ C)

A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

Important identities
in set theory. The last
four identities are called
De Morgan’s laws.

1.9
A1 ×A2 × · · · ×An =

{(a1, a2, . . . , an) : ai ∈ Ai for i = 1, 2, . . . , n}
The Cartesian product of
the sets A1, A2, . . . , An.

1.10 R ⊂ A×B
Any subset R of A × B
is called a relation from
the set A into the set B.

1.11
xRy ⇐⇒ (x, y) ∈ R

x/Ry ⇐⇒ (x, y) /∈ R

Alternative notations
for a relation and its
negation. We say that
x is in R-relation to y if
(x, y) ∈ R.

1.12

• dom(R) = {a ∈ A : (a, b) ∈ R for some b in B}
= {a ∈ A : aRb for some b in B}

• range(R) = {b ∈ B : (a, b) ∈ R for some a in A}
= {b ∈ B : aRb for some a in A}

The domain and range
of a relation.

If A = {1, 2, 3} and Ω = {1, 2, 3, 4, 5}, then AC = {4, 5}.
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Operations on Sets V

We can also form differences of sets.
A \ B = {x |x ∈ A and x /∈ B}.

2

1.7

A ∪B = {x : x ∈ A ∨ x ∈ B} (A union B)

A ∩B = {x : x ∈ A ∧ x ∈ B} (A intersection B)

A \B = {x : x ∈ A ∧ x /∈ B} (A minus B)

A
B = (A \B) ∪ (B \A) (symmetric difference)

If all the sets in question are contained in some
“universal” set Ω, one often writes Ω \A as

Ac = {x : x /∈ A} (the complement of A)

Basic set operations.
A \B is called the differ-
ence between A and B.
An alternative symbol
for Ac is �A.

A

B

Ω

A ∪B

A

B

Ω

A ∩B

A

B

Ω

A \B

A

Ω

Ac

A

B

Ω

A�B

1.8

(A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A
B = (A ∪B) \ (A ∩B)

(A
B)
 C = A
 (B 
 C)

A \ (B ∪ C) = (A \B) ∩ (A \ C)

A \ (B ∩ C) = (A \B) ∪ (A \ C)

A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

Important identities
in set theory. The last
four identities are called
De Morgan’s laws.

1.9
A1 ×A2 × · · · ×An =

{(a1, a2, . . . , an) : ai ∈ Ai for i = 1, 2, . . . , n}
The Cartesian product of
the sets A1, A2, . . . , An.

1.10 R ⊂ A×B
Any subset R of A × B
is called a relation from
the set A into the set B.

1.11
xRy ⇐⇒ (x, y) ∈ R

x/Ry ⇐⇒ (x, y) /∈ R

Alternative notations
for a relation and its
negation. We say that
x is in R-relation to y if
(x, y) ∈ R.

1.12

• dom(R) = {a ∈ A : (a, b) ∈ R for some b in B}
= {a ∈ A : aRb for some b in B}

• range(R) = {b ∈ B : (a, b) ∈ R for some a in A}
= {b ∈ B : aRb for some a in A}

The domain and range
of a relation.

If A = {1, 2, 3, 4, 5} and B = {1, 2}, then A \ B = {3, 4, 5}.
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Cardinality

The cardinality of a set is a measure of the number of elements in
the set.
Usually denoted with |A| (alternatives: n(A), card(A) or #A).

If A = {1, 2, 3, 4, 5}, then |A| = 5.
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Summary of definitions

∅ empty set
∪ union of two sets
∩ intersection of two sets
⊆ is a subset of
⊂ is a strict subset of
⊇ is a superset of
⊃ is a strict superset of
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Useful Notation

∈ is an element of
∀ for all
∃ there exists
⇒ implies
⇔, iff if and only if

: or s.t. such that
≡ equivalent to

∼ or ¬ not
\ without
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Laws of Set Theory

Commutative
A ∪ B = B ∪ A and A ∩ B = B ∩ A

Associative
(A ∩ B) ∩ C = A ∩ (B ∩ C ) and (A ∪ B) ∪ C = A ∪ (B ∪ C )

Idempotent
A ∩ A = A and A ∪ A = A

Distributive
A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) and
A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

De Morgan’s Laws
(A ∪ B)C = AC ∩ BC and (A ∩ B)C = AC ∪ BC

A\ (B ∩C ) = (A\B)∪ (A\C ) and A\ (B ∪C ) = (A\B)∩ (A\C )
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Spaces

Remember: R1 is the set of real numbers extending from −∞ to
∞, the real number line.

Rn is an n-dimensional space (”Euclidean space”), where each of
the n axes extends from −∞ to ∞.

Examples:

I R1 (R) is a line.

I R2 is a plane.

I R3 is a 3D-space.

Points in Rn are ordered n-tuples, where each element of the
n-tuple represents the coordinate along that dimension.

Math for Political Science Set Theory Introduction 25/ 186



Interval Notation for R1

Open interval: (a, b) ≡ {x ∈ R1 : a < x < b}
Closed interval: [a, b] ≡ {x ∈ R1 : a ≤ x ≤ b}
Half open, half closed interval: (a, b] ≡ {x ∈ R1 : a < x ≤ b}
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Neighborhoods: Intervals, Disks, and Balls

We need a formal construct for what it means to be ”near” a point
c in Rn. We call this the neighborhood of c and represent it by
an open interval, disk, or ball, depending on whether n is one, two,
or more dimensions, respectively. Given the point c, these are
defined as

I ε-interval in R1: {x : |x − c | < ε}
The open interval (c − ε, c + ε).

I ε-disk in R2: {x : ||x − c || < ε}
The open interior of the circle centered at c with radius ε.

I ε-ball in Rn: {x : ||x − c|| < ε}
The open interior of the sphere centered at c with radius ε.
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Interior and Boundary Points

Definition (Interior Point)

The point x is an interior point of the set S if x is in S and if there
is some ε-ball around x that contains only points in S . The
interior of S is the collection of all interior points in S .
Example: The interior of the set {(x , y) : x2 + y2 ≤ 4} is
{(x , y) : x2 + y2 < 4}.

Definition (Boundary Point)

The point x is a boundary point of the set S if every ε-ball around
x contains both points that are in S and points that are outside S .
The boundary of S is the collection of all boundary points.
Example: The boundary of the set {(x , y) : x2 + y2 ≤ 4} is
{(x , y) : x2 + y2 = 4}.
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Open and Closed Sets, Closure

Definition (Open Set)

A set S is called open if for each point x in S , there exists an open
ε-ball around x completely contained in S .
Example: {(x , y) : x2 + y2 < 4}

Definition (Closed Set)

A set S is called closed if it contains all of its boundary points.
Example: {(x , y) : x2 + y2 ≤ 4}
Note: a set may be neither open nor closed.
Example: {(x , y) : 2 < x2 + y2 ≤ 4}
Definition (Closure)

The closure of set S is the smallest closed set that contains S .
Example: The closure of {(x , y) : x2 + y2 < 4} is
{(x , y) : x2 + y2 ≤ 4}
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Bounded Set

Sometimes the definition of a closed set is not sufficient. Consider
the following case: the set (−∞, 0]∪ [1,∞) is a closed set because
its complement (0, 1) is open. However, there is no upper bound
to this set.

Definition (Boundedness)

A set A ⊂ Rn is bounded if it can be contained within an ε-ball.
That is, there will always be a real-valued number or vector that is
outside the set.
Example: any interval that does not have ∞ or −∞ as endpoints;
any disk in a plane with finite radius.
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Compact Set

Definition (Compact Set)

A set A ⊂ Rn is compact if it is closed and bounded.
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Convexity

Definition (Convex Set)

A set A in Rn is said to be convex iff for each x , y ∈ A, the line
segment λx + (1− λ)y for λ ∈ (0, 1) belongs to A. That is, all
points on a line connecting two points in the set are in the set.

13

Proposition 1. Let X ⊆Rn and x0 ∈ X . One has

affine.hull(X ) = x0 + lin.hull(X − x0),

where for u ∈Rn and V ⊆Rn , u+V denotes the set u +V = {u+ v | v ∈V }.

Proof. We first show that each x ∈ affine.hull(X ) is also an element of the set x0 +
lin.hull(X − x0) and then we show that each point x ∈ x0 + lin.hull(X − x0) is also
an element of affine.hull(X ).

Let x ∈ affine.hull(X ),i.e., there exists a natural number t > 1 andλ1, . . . ,λt ∈R,
with x = λ1x1 +·· ·+λt xt and

∑t
i=1λi = 1. Now

x = x0 − x0 +λ1x1 +λ2x2 +·· ·+λt xt

= x0 −λ1x0 −·· ·−λt x0 +λ1x1 +λ2x2 +·· ·+λt xt

= x0 +λ1(x1 − x0)+·· ·+λt (xt − x0),

which shows that x ∈ x0 + lin.hull(X − x0).
Suppose now that x ∈ x0 + lin.hull(X − x0). Then there exist λ1, . . . ,λt ∈ R with

x = x0+λ1(x1−x0)+·· ·+λt (xt −x0). With λ0 = 1−∑t
i=1λi one has

∑t
i=0λi = 1 and

x = x0 +λ1(x1 − x0)+·· ·+λt (xt − x0)

= λ0x0 +·· ·+λt xt

and thus that x ∈ affine.hull(X ). ⊓⊔

Definition 1. The convex hull of two distinct points u 6= v ∈ Rn is called a line
segment and is denoted by uv .

Definition 2. A set K ⊆Rn is convex if for each u 6= v , the line-segment uv is con-
tained in K , uv ⊆ K .

Fig. 2.4 The set on the left is convex, the set on the right is non-convex.

In other words, a set K ⊆ Rn is convex, if for each u, v ∈ K and λ ∈ [0,1] the
point λu+ (1−λ)v is also contained in K .

Theorem 1. Let X ⊆Rn be a set of points. The convex hull, conv(X ), of X is convex.

set is convex

13

Proposition 1. Let X ⊆Rn and x0 ∈ X . One has

affine.hull(X ) = x0 + lin.hull(X − x0),

where for u ∈Rn and V ⊆Rn , u+V denotes the set u +V = {u+ v | v ∈V }.

Proof. We first show that each x ∈ affine.hull(X ) is also an element of the set x0 +
lin.hull(X − x0) and then we show that each point x ∈ x0 + lin.hull(X − x0) is also
an element of affine.hull(X ).

Let x ∈ affine.hull(X ),i.e., there exists a natural number t > 1 andλ1, . . . ,λt ∈R,
with x = λ1x1 +·· ·+λt xt and

∑t
i=1λi = 1. Now

x = x0 − x0 +λ1x1 +λ2x2 +·· ·+λt xt

= x0 −λ1x0 −·· ·−λt x0 +λ1x1 +λ2x2 +·· ·+λt xt

= x0 +λ1(x1 − x0)+·· ·+λt (xt − x0),

which shows that x ∈ x0 + lin.hull(X − x0).
Suppose now that x ∈ x0 + lin.hull(X − x0). Then there exist λ1, . . . ,λt ∈ R with

x = x0+λ1(x1−x0)+·· ·+λt (xt −x0). With λ0 = 1−∑t
i=1λi one has

∑t
i=0λi = 1 and

x = x0 +λ1(x1 − x0)+·· ·+λt (xt − x0)

= λ0x0 +·· ·+λt xt

and thus that x ∈ affine.hull(X ). ⊓⊔

Definition 1. The convex hull of two distinct points u 6= v ∈ Rn is called a line
segment and is denoted by uv .

Definition 2. A set K ⊆Rn is convex if for each u 6= v , the line-segment uv is con-
tained in K , uv ⊆ K .

Fig. 2.4 The set on the left is convex, the set on the right is non-convex.

In other words, a set K ⊆ Rn is convex, if for each u, v ∈ K and λ ∈ [0,1] the
point λu+ (1−λ)v is also contained in K .

Theorem 1. Let X ⊆Rn be a set of points. The convex hull, conv(X ), of X is convex.

set is not convex
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Why Bother with This?

These formal definitions are rather abstract and meaningless at
first glance. However, they constitute some very important
fundamentals, which ease the life of a scientist. Why is that?

In many applications we can show that some results hold if a set is
compact. For example, in game theory we know that (under certain
very general assumptions about rationality of persons) amongst a
set of possible choices there will always be some alternative which
is preferred the most by a person if the set of choices is compact.

In addition, if we know that this set is also convex, we then know
that there will be exactly one most preferred alternative.

Beyond this example there are many other applications in political
science that use the notion of compact sets.
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Set Theory

Functions
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What is a function?

Definition (Function)

A function or map, denoted by f : X 7→ Y , has 3 parts:

I A set X to map from. This set is called the domain of f .

I A set Y to map to. This set is called the co-domain of f .

I A rule for every element x ∈ X , assigning it to some element
y ∈ Y . This is written f (x) = y

Examples:

I f : {1, 2, 3} → {3, 4, 5}
: x 7→ x + 2

I f : {1, 2} → {1, 3}
f (1) = 1, f (2) = 3
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Linking Sets: Injection, Bijection, and Surjection

Definition (Injection)

A function f is called injective if for every x1, x2 ∈ X ,
f (x1) = f (x2) implies x1 = x2. Verbally, every element of the
codomain Y is linked to at most one element of the domain X .

Injection

Surjection

Bijection
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Linking Sets: Injection, Bijection, and Surjection

Definition (Surjection)

A function f is called surjective if for every y ∈ Y there is an
x ∈ X with f (x) = y . Verbally, every element of the codomain Y
is linked to at least one element of the domain X .

Injection

Surjection

BijectionMath for Political Science Set Theory Functions 37/ 186



Linking Sets: Injection, Bijection, and Surjection

Definition (Bijection)

A function f is called bijective if it is injective and surjective, i.e.
every element of the domain X is linked to one and only one
element of the codomain Y and vice versa.

Injection

Surjection

Bijection
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Analysis I
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Analysis (Calculus)

Resources:

I Moore/Siegel: Chapters 2, 5-6

I Siegel on Youtube: Lecture 1 Modules 7-9, Lectures 3-4

I Gill: Chapter 5
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Rules for Exponentials and Fractions

I x0 = 1

I xa = x · x · x . . . · x︸ ︷︷ ︸
a factors

I xa · xb = xa+b

I (xa)b = xa·b

I (xy)a = xaya

I 1
xa = x−a

I
(
x
y

)a
=
(
xa

ya

)
= xa · y−a

I x( a
b ) = (xa)

1
b = b
√
xa

I For ab we say “a raised to the b-th power,” “a raised to the
power/exponent (of) b,” or more briefly “a to the b.”

I For a
b we say “a divided by b,” “a by b,” or “a over b.”
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Binomial Theorem

I (a + b)2 = a2 + 2ab + b2

I (a− b)2 = a2 − 2ab + b2

I (a + b) (a− b) = a2 − b2

I and universally stated: (a + b)n =
∑n

k=0

(n
k

)
an−kbk ; n ∈ N
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Logarithms

I For those with a German background: Please note that in
English texts the expression log without specification of a
base is equal to ln, i.e. the natural logarithm!

I loga(1) = 0

I loga(xy) = loga(x) + loga(y)

I loga( xy ) = loga(x)− loga(y)

I loga (xy ) = y loga(x)

I loga (ax) = x and aloga(x) = x

I Read loga b as “the logarithm of b to the base a” or “the
base-a logarithm of b”
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Quadratic Expressions

Equations of the form ax2 + bx + c = 0 can be solved using the
quadratic formula (in German the so-called “Mitternachtsformel”)

x1|2 =
−b ±

√
b2 − 4ac

2a
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Equations with one variable

Assume that we want to solve the following equation for x .

2
√
x − 3 = 1 |+ 3 we can add . . .
2
√
x = 4 | : 2 . . . divide . . .√
x = 2 |a2 . . . raise to the power...
x = 4 . . . and much more
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Equations with several variables

In political science applications solving for one variable oftentimes
is not enough. So let us now consider the solution of two
simultaneous equations with two variables.

2x + 3y = 4 (1)
x − 2y = 5 (2)

Solve equation (2) for x and insert this into (1):

x = 2y + 5 (2)’
4y + 10 + 3y = 4 (2)’ in (1)

This gives y = −6
7 . Inserting this into (2)’ gives x = 23

7 .
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Analysis I

Derivatives
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Motivation

I What is the relationship between the level of democracy and
economic growth?

I for linear relationships, the information is directly available
from the equation - the slope m

I What do we do when we have a non-linear function?

I What is the slope m at some point x0?
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What is a derivative? I
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What is a derivative? II

Math for Political Science Analysis I Derivatives 50/ 186



What is a derivative? III
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What is a derivative? IV
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What is a derivative? V
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What is a derivative? VI
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What is a derivative? VII
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What is a derivative? VIII
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What is a derivative? IX
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What is a derivative? X

We want to estimate the slope of a function at point x0.

I As a rough estimate we can
form the difference quotient
∆y
∆x .

I Decreasing ∆x continuously
brings us closer and closer to
the true slope...

I In limit we approach the
derivative at point x0.

66 Functions of one variable: differential calculus

Differential

For a function f which is differentiable at the point x0 one has

∆y = ∆f(x0) = f(x0 +∆x) − f(x0) = f ′(x0) ·∆x+ o(∆x),

where the relation lim
∆x→0

o(∆x)

∆x
= 0 holds. Here o(·) (“small o”) is the Landau

order symbol.

The expression

dy = df(x0) = f ′(x0) ·∆x

or

dy = f ′(x0) · dx

occurring in this relation is called the
differential of the function f at the
point x0. It describes the main part of
the increase of the function value when
changing the argument x0 by ∆x:

∆f(x0) ≈ f ′(x0) ·∆x .

x

y
f(x)

x0 x0+∆x

dy

⎫
⎬
⎭∆y

Economic interpretation of the first derivative

• In economic applications the first derivative if often called the marginal
function. It describes approximately the increase of the function value when
changing the independent variable x by one unit, i. e.∆x = 1 (�differential).
The background is the economic notion of the marginal function decribing
the increase of the function value when changing x by one unit:

∆f(x) = f(x+ 1)− f(x) .

• The investigation of economic problems by means of marginal functions is
usually denoted as marginal analysis. In doing so, the units of measure of
the quantities involved are very important:

unit of measure of f ′ = unit of measure of f / unit of measure of x

Illustrations by Allison Horst
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Intuition I

The derivative:

I is a measure of how a function changes as its input changes

I of a function at a chosen input value describes the best linear
approximation of the function near that input value

I at a point equals the slope of the tangent line to the graph of
the function at that point (linearization of a function for the
multivariate case)
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Intuition II

I f (x) = 3
1+x2

I f ′(x) = − 6x
(x2+1)2

I Observations:
I slope is not a number

anymore, but a function
(it varies with x)

I for any x, f ′(x) gives us
the slope (a value)

I e.g. f ′(x0 = 0.5) = -1.92

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

x

y

f'(x)

f(x)

x0
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Definition

Definition (Limit of a Function)

Assuming x , p, c , L ∈ R, the limit of a real valued function f when
x approaches p, denoted as limx→p f (x) = L, is L if
∀ε > 0∃c > 0, s.t.∀x , 0 < |x − p| < c =⇒ |f (x)− L| < ε.

Note, that if p = +∞ or p = −∞ , L is called the asymptote of
the function.
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Definition

Definition (Derivative)

Let (x0, f (x0)) be a point on the graph of y = f (x). The
derivative of f at x0, written f ′(x0), df

dx (x0), dy
dx (x0) is the slope of

the tangent line to the graph of f at (x0, f (x0)):

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h

if this limit exists. If this limit exists for every point x in the
domain of f , the function is differentiable.
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Differentiability

I graph has to be ’smooth’ (no gaps, holes, ... )

I if f is differentiable, it must be continuos (converse does not
hold)

function is not differentiable function is differentiable

Math for Political Science Analysis I Derivatives 63/ 186



Continuity

Definition (Continuity)

A function f is continuous at x = a if limx→a f (x) = f (a)

function is discontinuous function is continuous
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Semi-Continuity

function is lower
(semi-)continuous

function is upper
(semi-)continuous
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Analysis I

Rules of Differentiation
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Rules of Differentiation I

Rules for Common Functions
I f (x) = xa, then f ′(x) = axa−1

I f (x) = ln(x), then f ′(x) = 1
x

I f (x) = logax , then f ′(x) = 1
x ln a

I f (x) = eax , then f ′(x) = aeax

I f (x) = a, where a is a constant, e.g. 1, then f ′(x) = 0

I f (x) = ax , then f ′(x) = loga a
x

I f (x) = 1
x = x−1, then f ′(x) = − 1

x2
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Rules of Differentiation II

Sum Rule
I [f (x) + g(x)]′ = f ′(x) + g ′(x)

I Example:

h(x) = 2x + x2

h′(x) = 2 + 2x
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Rules of Differentiation II

Product Rule
I [f (x) · g(x)]′ = f ′(x) · g(x) + f (x) · g ′(x)

I Example:

h(x) = 2x ·
√
x

h′(x) = 2 ·
√
x + 2x · 1

2
√
x
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Rules of Differentiation III

Quotient Rule

I
[
f (x)

g(x)

]′
=

f ′(x) · g(x)− f (x) · g ′(x)

(g(x))2

I Example:

h(x) =
3x

2− x2

h′(x) =
3 · (2− x2)− 3x · (−2x)

(2− x2)2
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Rules of Differentiation III

Chain Rule
I [f (g(x))]′ = f ′(g(x)) · g ′(x)

I Example:

h(x) = (5x − 2)3

h′(x) = 3(5x − 2)2 · 5
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Analysis I

Partial Derivatives

Math for Political Science Analysis I Partial Derivatives 72/ 186



Motivation

I What if the relationship between the level of democracy does
not only dependent on economic growth, but also on the
political institutions?

I We can generalize the concept of a derivative to the
multivariate case

I Partial derivates say something about the changes in y given
a change in xi holding all other arguments at some level
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Partial Derivatives I

Definition (Partial Derivatives)

Let f be a multivariate function. Then for each variable xi at each
set of points (x0

1 , ..., x
0
n ) in the domain of f :

∂f

∂xi
(x0

1 , ..., x
0
n ) = lim

h→0

f (x0
1 , ..., x

0
i + h, ..., x0

n )− f (x0
1 , ..., x

0
i , ..., x

0
n )

h

is called the partial derivative, if the limit exists.

Note, that we usually write ∂f
∂x

for partial derivatives and df
dy

for derivatives.
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Partial Derivatives II

Example:

f (x1, x2) = x2
1 · ln x2

∂f

∂x1
= 2x1 · ln x2

∂f

∂x2
= x2

1 ·
1

x2
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Intuition

I f (x1, x2) = 3x2

1+x2
1

I ∂f (x1,x2)
∂x1

= −6x1x2

(x2
1 +1)2

I Observations:
I slope varies not only with x1, but also with x2

I e.g. ∂f (x1=0.5,x2)
∂x1

= −1.92x2

−4 −2 0 2 4

−
2

−
1

0
1

2

x1

y

df(x1, x2) dx1

f(x1, x2)

x0

−4 −2 0 2 4

−
2

−
1

0
1

2

x2

∂ 
f(x

1
=

0.
5,

 x
2)

∂ 
x
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Second-order Partial Derivatives

Reconsider the example from the last slide

f (x1, x2) = x2
1 · ln x2

∂f

∂x1
= 2x1 · ln x2

∂f

∂x2
= x2

1 ·
1

x2

∂2f

∂x2
1

= 2 · ln x2

∂2f

∂x2
2

= −x2
1 ·

1

x2
2

Second-order derivatives describe how the slope of the first derivative changes
given changes in x .
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Mixed Partial Derivatives I

Reconsider the example from the last slide

f (x1, x2) = x2
1 · ln x2

∂f

∂x1
= 2x1 · ln x2

∂f

∂x2
= x2

1 ·
1

x2

∂2f

∂x1∂x2
= 2x1 ·

1

x2

Math for Political Science Analysis I Partial Derivatives 78/ 186



Mixed Partial Derivatives II

Theorem (Young’s Theorem)

Suppose that all the mth-order partial derivatives of the function
f (x1, x2, . . . , xn) are continuous. If any of them involve
differentiating with respect to each of the variables the same
number of times, then they are necessarily equal.

In the case of f (x1, x2), that implies for example:

∂2f

∂x1∂x2
≡ ∂2f

∂x2∂x1
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Hessian Matrix I

Because of the importance of the second-order partial derivatives
for constrained optimization there does exist a special of collecting
them, the so-called Hessian Matrix

H(f ) =




∂2f
∂2x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x1∂x1

∂2f
∂2x2

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂2xn




Application

I Estimation of covariance matrix

I Optimization in maximum likelihood

I ...
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Analysis II
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Analysis (Calculus)

Resources:

I Moore/Siegel: Chapters 7-8, 15-17

I Siegel on Youtube: Lectures 5-6 and 12-16

I Gill: Chapter 6
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Analysis II

Optimization
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Motivation for Optimization

In decision theory we are interested in the decision-making process
of an individual.

Let us assume, we have a specified utility function of a person
u(x) = −(x +

√
a)2.

We want to know the optimal choice the person can take. How do
we do this?
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Motivation for Optimization

u(x) = −(x +
√
a)2.
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Single Variable Optimization - FOC

The first step to get an answer to this problem is to search for the
so-called first-order condition (FOC):

df

dx
≡ 0

I We derive the first line because we know that in an extreme
point the slope of the function (i.e. its first derivative) equals
zero.

I In our case df
dx = −2x − 2

√
a.

I Solving the equality gives us x? = −√a.

I So now we know that at this point the function either has a
(local) maximum/minimum (or a saddle point).
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Single Variable Optimization - SOC

Now we need to specify which of the three possibilities applies. We
do this by checking the second-order condition.

I Local maximum if d2f
dx2 (x?) < 0, i.e. the function is concave

I Local minimum if d2f
dx2 (x?) > 0, i.e. the function is convex

I Saddle point if d2f
dx2 (x?) = 0 and d3f

dx3 6= 0.

In our example d2f
dx2 (−√a) = −2. So we have a local maximum.

Controlling for the other parts of the function, we find that this is
also a global maximum.
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Convex, Concave, and Inflection Point

I A function is called convex if d2f
dx2 ≥ 0.

I A function is called concave if d2f
dx2 ≤ 0.

I A point a as called inflection point if d2f
dx2 = 0 and d2f

dx2

changes sign at a.

I If a is an inflection point and df
dx = 0, then it is a saddle

point.
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More General Definition of Concavity/Convexity
A function is called concave (convex) if the line segment joining
any two points on the graph is below (above) the graph, or on the
graph.

concave convex

We can derive the concavity/convexity of functions from the
concept of convex sets. A function is called convex if the set of all
points which are on or above its graph is a convex set. Conversely,
a function is called concave if the set of all points which are on or
below its graph is a convex set.
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Bivariate Optimization I

Consider a C 2 function (i.e. a function that is both continuous and twice
differentiable) f (x , y) in a convex set S .

Fist-order condition

I Find the first-order partial derivatives and equate them to zero.

I Solve the two-equation system for the values of x and y .

I (x?, y?) is the stationary point.

Second-order condition

I If for all (x , y) in S , ∂2f
∂x2 ≤ 0, ∂

2f
∂y2 ≤ 0, and ∂2f

∂x2
∂2f
∂y2 −

(
∂2f
∂x∂y

)2

≥ 0

then (x?, y?) is a maximum point for f (x , y) in S .

I If for all (x , y) in S , ∂2f
∂x2 ≥ 0, ∂

2f
∂y2 ≥ 0, and ∂2f

∂x2
∂2f
∂y2 −

(
∂2f
∂x∂y

)2

≤ 0

then (x?, y?) is a minimum point for f (x , y) in S .

Math for Political Science Analysis II Optimization 90/ 186



Bivariate Optimization II

Consider the function f (x , y) = −0.5(x − 1)2 − y2.
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Bivariate Optimization III

Function f (x , y) = −0.5(x − 1)2 − y2.

The first order condition

∂f

∂x
= −x + 1 ≡ 0

∂f

∂y
= −2y ≡ 0

gives us a stationary point at x = 1, y = 0.
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Bivariate Optimization IV

The second order condition

∂2f

∂x2
= −1 < 0

∂2f

∂y2
= −2 < 0

∂2f

∂x2
· ∂

2f

∂y2
−
(
∂2f

∂x∂y

)2

= (−1) · (−2)− 0 ≥ 0

tells us that we have a maximum at x = 1, y = 0.

Math for Political Science Analysis II Optimization 93/ 186



Extreme Value Theorem/Weierstrass Theorem

Theorem (Extreme Value Theorem/Weierstrass Theorem)

Suppose the function f (x) is continuous throughout a nonempty,
closed and bounded set S in Rn. Then there exists a point d in S
where f has a minimum and a point c in S where f has a
maximum. That is,

f (d) ≤ f (x) ≤ f (c) for all x ∈ S .

You will find the Weierstrass Theorem on page 20 of McCarty and
Meirowitz (2007).
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Comparative Statics I

Testable predictions of formal models are typically based on
comparative statics. For example, a researcher might ask...

I ...what happens to the likelihood of the outbreak of civil war if
the ethnic diversity of the country increases.

I ...how the level of voter turnout changes as party polarization
changes.

I ...how party cohesiveness changes as the level of electoral
competitiveness changes?

I ...government public goods provision changes as the size of
the winning coalition changes?

More generally: How do changes in the parameters of a model
affect the model’s solution?

Math for Political Science Analysis II Optimization 95/ 186



Comparative Statics II

Recall the optimal choice x? = −√a of the person with the utility
function u(x) = −(x + a)2. How does the optimal choice change
as the value of a changes?

dx?

da
=

1

2
√
a

An increase of one unit a increases u(x) by 1
2
√
a

units, ceteris

paribus.
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Optimization Under Constraints - Problem

So far we have considered decision problems in general. But what
about situations in which an agent has to make her decision under
given constraints?

Let us consider the following example:
We as a city can decide to allocate our budget between cultural
(c) and social (s) affairs. The overall utility function of our city is
given by f (x) = 1

2s
2 + (c − 1

3 )2. Our budget is constrained as
c + s = 2.

A method to solve such problems is the so-called Lagrangian
multiplier method.
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Lagrangian Multiplier Method I
In order to solve the maximization problem max f (x , y) subject to
g(x , y) = c we proceed the following way.

1. Write down the Lagrangian
L(x , y) = f (x , y)− λ (g(x , y)− c), where λ is a constant.

2. Differentiate L with respect to x and y , and equate the
partial derivatives to 0.

3. Solve the system of equations that the two partials form
together with the constraint.

∂L
∂x

=
∂f

∂x
− λ∂g

∂x
≡ 0

∂L
∂y

=
∂f

∂y
− λ∂g

∂y
≡ 0

g(x , y) = c
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Application to our problem

The Lagrangian

L(s, c , λ) =
1

2
s2 +

(
c − 1

3

)2

− λ(s + c − 2)

The system of equations

∂L
∂s

= s − λ ≡ 0

∂L
∂c

= 2c − 2

3
− λ ≡ 0

s + c = 2

If we solve the system of equations, we get c = 8
9 and s = 10

9 .
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Lagrangian Multiplier Method II

If we compare the Lagrangian method for constrained optimization
to the unconstrained optimization, is still something missing?

Yes, theoretically we have to check for the second order-condition.

You find the formulation in Sysdsæter/Hammond (2008) on pp.
506-507.
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Advanced Constrained Optimization

There is much more to constrained optimization!

I Multivariable optimization (we need matrix algebra for that!).

I Lagrangian for more than two variables.

I Lagrangian for more than one condition.

I Optimization for inequalities
max f (x , y) subject to g(x , y) ≤ c
“nonlinear programming” or “Kuhn-Tucker”

See Sysdsæter/Hammond (2008), Chapter 14.
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Analysis II

Integration
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Motivation I

I probability density functions (p.d.f) are fundamental to
statistics

I p.d.f. relate a particular event (x) to a probability (y)

I when we are interested in calculating the probability for a
range of events, we need to calculate the area under the curve
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Motivation II

I We know that IQ test scores amongst people of the same age
are distributed normally with mean 100 and standard
deviation 15.

I What is the probability that a person has a score of more than
120?

40 60 80 100 120 140 160

0.005

0.010

0.015

0.020

0.025

0.030

It is the area below the normal p.d.f. for x > 120 (p≈ 9.12%)
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Intuition

I The indefinite integral F (x) of a function f (x) is the area
between the function and the x-axis.

I We can think of this integral also as the sum of an infinite
number of rectangles below the curve!

I Calculating an integral is the reverse process of taking a
derivative. For this we sometimes refer to an integral as
antiderivative.

a b

f(x) = kx

Figure 5: Area Under the Linear Functionf(x) = kx

ka2/2, respectively. Thus we can conclude that:

∫ b

a

kxdx =
kb2

2
− ka2

2
. (2)

4 Upper and Lower Sums

Without calculus, it is difficult to do many exact evaluations of Riemann integrals, and what we present
here is a general method which, by itself, gives a good approximation of an integral. This method also
allows us to put error bounds on that estimate, and if we are allowed to use the mathematical concept of
a limit, we can, in many cases, provide an exact evaluation of a Riemann Integral.

f(x) f(x)

Figure 6: Upper and Lower Sums

Look at the two examples in Figure 6. We would like to determine the area under the curvey = f(x)
between two values ofx and one method to obtain an estimate is to subdivide thex-axis into a number
of equally-spaced intervals2. On each of the small intervals, the functionf(x) takes on a smallest and a
largest value3.

On the left, we form rectangles whose height is the minimum value off(x) on each of the small intervals.
On the right, the height of the rectangles are the maximum values off(x) on each interval. If we add up
all the areas of the rectangles on the left, since all of them are contained in the area under the curve, that

2They do not need to be equally-spaced for the general integral, but for the purposes of an introduction, this is a reasonable way
to begin.

3Again, this may not be the case for all functions, but for now we will consider only “well-behaved” functions.

4
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Definition Integral

Definition (Riemann Integral)
Let f be a continuos function on a closed interval [a, b]. Let there be N equal
subintervals, each of length δ = (b − a)/N. Let x0, x1, ..., xN be the endpoints
of these subintervals, e.i x0 = a, x1 = a + δ, x2 = a + 2δ, ..... The sum

f (x1)(x1 − x0) + f (x2)(x2 − x1) + ....+ f (xN)(xN − xN−1) =
N∑
i=1

f (xi )δ

is the Riemann sum. Taking the limit gives the Riemann integral:

lim
δ→0

N∑
i=1

f (xi )δ =

∫ b

a

f (x)dx
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Fundamental Theorem of Calculus

Theorem (Fundamental Theorem of Calculus (Part I))

Let f be a continuous real-valued function defined on a closed
interval [a, b]. Let F be the function for all x ∈ [a, b], by

F (x) =

∫ x

a
f (t)dt

Then, F is continuous on [a, b], differentiable on the open interval
(a, b), and

F ′(x) = f (x)

for all x ∈ (a, b).
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Fundamental Theorem of Calculus

Theorem (Fundamental Theorem of Calculus (Part II))

Let f and F be real-valued functions defined on a closed interval
[a, b], such that the derivative of F is f. If f is (riemann)
integrable on [a, b] then

∫ b

a
f (x)dx = F (b)− F (a).

Note, that there are infinitely many functions F that have f as
their derivative, obtained by adding to F an arbitrary constant. So,
we write

∫
f (x)dx = F (x) + c , where c is an arbitrary constant.
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Example

∫ 4

1
xdx =

∣∣∣∣
4

1

1

2
x2

=
1

2
42 − 1

2
12

= 7.5
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Definite and Indefinite Integral

The difference between an indefinite and a definite integral is the
interval of integration.

∫
f (x)dx indefinite integral∫ b
a f (x)dx definite integral

The numbers a and b are called, respectively, the lower and upper
limit of integration.
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Properties

Properties (I)

I ∫
af (x)dx = a

∫
f (x)dx

I ∫
[f (x) + g(x)] dx =

∫
f (x)dx +

∫
g(x)dx
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Properties (II)

Properties (II)

I ∫ b
a f (x)dx = −

∫ a
b f (x)dx

I ∫ a
a f (x)dx = 0

I ∫ b
a cf (x)dx = c

∫ b
a f (x)dx

I ∫ b
a f (x)dx =

∫ c
a f (x)dx +

∫ b
c f (x)dx

Caution: Areas between the function and the x-axis which are below the x-axis
are subtracted!
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Special Cases

Special Integrals

I ∫
xadx = 1

a+1x
a+1 + c, where a 6= −1

I ∫
1

x−adx = ln(x − a) + c , where x > a

I ∫
eaxdx = 1

ae
ax + c, where a 6= 0

I ∫
axdx = 1

ln aa
x + c, where a > 0 and a 6= 1
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Linear Algebra

Math for Political Science Linear Algebra 114/ 186



Linear Algebra

Resources:

I Moore/Siegel: Chapters 12,13,14.1

I Siegel on Youtube: Lectures 10-11

I Gill: Chapters 3,4
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Motivation I

I A statistical model describes how some variables (x0...xk)
generate another variable y given some parameters (β0...βk)
and an error term (ε1...εn), e.g. the linear regression model

I to estimate the parameters, we essentially set up a system of
n equations

I each equation describes how each of our n data point was
generated, e.g.

y1 = β0 + β1x1 + ε1

y2 = β0 + β1x2 + ε2

...

yn = β0 + β1xn + εn
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Motivation II

I Linear Algebra gives us the ability (among other things) to
answer questions such as:
I Is there a solution to a system?
I What is the solution set (e.g. the parameters)?
I How many solutions are there? What is the space of solutions?
I Can the system be described by a simpler system of equations?
I ...

I Matrix notation is a very efficient way to manipulate
(simplify) systems of equations
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Linear Algebra

Vectors
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Vector Spaces and Vectors

Definition (Vector Space)

A vector space V is a nonempty set of objects, called vectors
denoted with lower case bold letters, on which are defined two
operations (addition, multiplication by real scalars), subject to
eight axioms:

I a + b = b + a Commutativity

I (a + b) + c = a + (b + c) Associativity of vector addition

I a + 0 = a Additive identity

I a +−a = 0 Existence of an additive inverse

I c(a + b) = ca + cb Distributivity of scalar sums

I (c + d)a = ca + da Distributivity of vector sums

I c(da) = (cd)a Associativity of scalar multiplication

I 1a = a Multiplication identity

∀a, b, c ∈ V ∧ c, d ∈ R
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Euclidean Space

We focus on a special vector space:

I Euclidean space / Cartesian space - Rn

I Euclidean vector: collection of n real numbers either
represented as row or column vector:

a = (a1, a2, . . . , an) =




a1

a2
...
an




′
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Vector Spaces and Vectors

(continued)

I Terminology: ai is an element or component; the vector’s
dimension is the equal to the number of components

I Interpretation of a:
I line segment connecting the origin (0, 0) with the point a
I the point a
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Vector Operations

Vector addition of vectors with the same dimension is defined as:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)

= a + b = c

Graphically (R2):

a

b c
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Vector Operations

Scalar multiplication of a vector a and scalar α is defined as:

α(a1, a2, . . . , an) = (αa1, αa2, . . . , αan)

Graphically (R2):
a αa
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Vector Norm and Distance

The norm (length) of a vector a = (a1, a2, . . . an) is defined as:

‖a‖ =
√

a2
1 + a2

2 . . . a
2
n =

√√√√ n∑
i=1

a2
i .

A normalized vector has a norm of 1. A zero vector has a norm of 0 (note:
‖a‖ = 0 ⇐⇒ ai = 0∀i).

Application in R2: (Euclidean) distance between two points a, b

‖a− b‖ =
√

(a1 − b1)2 + (a2 − b2)2 (Theorem of Pythagoras)

Generalized to n-dimensions:

‖a− b‖ =

√∑
i∈n

(ai − bi )2
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Dot product
The inner product (dot product) of two vectors of equal
dimension is defined as:

a · b = a1 · b1 + a2 · b2 . . . an · bn =
n∑

i=1

aibi

Graphically (R2):

a

b

θ

a · b = ‖a‖ ‖b‖ cos(θ),where θ is the angle between the vectors.
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Properties

Properties of the Dot Product

If a, b, and c are n-vectors and α is a scalar, then

I a · b = b · a
I a · (b + c) = a · b + a · c
I (αa) · b = a(αb) = α(a · b)

I a · a > 0⇐⇒ a 6= 0
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Linear Algebra

Matrices
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Matrix

A matrix A, denoted with bold capital letters, is structured into I
rows and J columns. It is said to have the size (dimension) I × J.
The cells in the matrix are called elements.

A =




a11 a12 · · · a1j

a21 a22 · · · a2j
...

...
. . .

...
ai1 ai2 · · · aij
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Matrix Operations

Matrix Addition for two matrices A and B with the same
dimension corresponds to vector addition for each column (or row).

Example:




1 2 3
4 5 6
7 8 9


+




3 2 1
1 2 3
1 1 1


 =




4 4 4
5 7 9
8 9 10







1 2 3
4 5 6
7 8 9


−




3 2 1
1 2 3
1 1 1


 =



−2 0 2
3 3 3
6 7 8
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Matrix Operations

Scalar Multiplication for a matrix A with scalar α corresponds to
scalar multiplication of a vector for each column (or row).

Example:

2×




1 2 3
4 5 6
7 8 9


 =




2 4 6
8 10 12

14 16 18
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Properties

Properties of Matrices (I)

1. (A + B) + C = A + (B + C)

2. A + B = B + A

3. A + 0 = A

4. A + (−A) = 0

5. (α + β)A = αA + βA

6. α(A + B) = αA + αB
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Matrix Product

Matrix Product of two matrices A and B with dimension w × x
and y × z is defined if the number of columns in A is equal to the
number of rows in B, that is, x = y . The new matrix has
dimension w × z .


a11 a12 · · · a1x

a21 a22 · · · a2x

...
...

. . .
...

aw1 aw2 · · · awx

×

b11 b12 · · · b1z

b21 b22 · · · b2z

...
...

. . .
...

by1 by2 · · · byz



=


∑y

i=1 a1ibi1
∑y

i=1 a1ibi2 · · · ∑y
i=1 a1ibiz∑y

i=1 a2ibi1
∑y

i=1 a2ibi2 · · · ∑y
i=1 a2ibiz

...
...

. . .
...∑y

i=1 awibi1
∑y

i=1 awibi2 · · · ∑y
i=1 awibiz



Math for Political Science Linear Algebra Matrices 132/ 186



Matrix Product

Example:

1 2
3 4
5 6

× ( 7 8 9
10 11 12

)
=

1 · 7 + 2 · 10 1 · 8 + 2 · 11 1 · 9 + 2 · 12
3 · 7 + 4 · 10 3 · 8 + 4 · 11 3 · 9 + 4 · 12
5 · 7 + 6 · 10 5 · 8 + 6 · 11 5 · 9 + 6 · 12


=

27 30 33
61 68 75
95 106 117
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Properties

Properties of Matrices (II)

1. (AB)C = A(BC)

2. A(B + C) = AB + AC

3. (A + B)C = AC + BC

Note,

I AB 6= BA

I A(B + C) 6= (B + C)A
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Kronecker Product

If A is an w × x matrix and B is a y × z matrix, then the
Kronecker product A⊗ B is the wy × xz block matrix.

A⊗ B =


a11 a12 · · · a1x

a21 a22 · · · a2x

...
...

. . .
...

aw1 aw2 · · · awx

⊗

b11 b12 · · · b1z

b21 b22 · · · b2z

...
...

. . .
...

by1 by2 · · · byz



=


a11B a12B · · · a1xB
a21B a22B · · · a2xB

...
...

. . .
...

aw1B aw2B · · · awxB
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Matrix Transposition

The Transpose is defined as a matrix where rows and columns are
“interchanged”. We denote the transpose of a matrix A by AT or
A′.

Example: 


1 2
3 4
5 6




T

=

(
1 3 5
2 4 6

)
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Properties

Properties of Matrices (III)

1. (A′)′ = A

2. (A + B)′ = A′ + B′

3. (αA)′ = αA′

4. (AB)′ = B′A′
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Square Matrix

An i × j matrix A is called square matrix if i = j , that is, the
numbers of rows and columns are the same.




1 2 3
4 5 6
7 8 9
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Symmetric Matrix

A square matrix A is called symmetric if A = A′. That is, A is
symmetric about its main diagonal. Another way to express this is
aij = aji∀i , j .




1 2 3
2 2 4
3 4 5



′

=




1 2 3
2 2 4
3 4 5
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Diagonal Matrix

A square symmetric matrix A is called diagonal matrix if
aij = 0 ∀ i 6= j . That is, every element is zero except for the
elements on the main diagonal.




1 0 0
0 2 0
0 0 3
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Identity Matrix

A square diagonal matrix A is called identity matrix I if the
elements on the main diagonal are all equal to one.

I3 =




1 0 0
0 1 0
0 0 1




Math for Political Science Linear Algebra Matrices 141/ 186



Triangular Matrix

A square matrix A is called upper (lower) triangular matrix if
aij = 0 for all i > j (i < j), that is, a matrix in which all entries
below (above) the main diagonal are 0.




1 2 3
0 5 6
0 0 9


 and




1 0 0
4 5 0
7 8 9
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Idempotent Matrix

A square matrix A for which A · A = A is called idempotent.

(
5 −5
4 −4

)
×
(

5 −5
4 −4

)
=

(
5 −5
4 −4

)
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The Hessian

Because of the importance of the second-order partial derivatives
for constrained optimization there does exist a special way of
collecting them, the so-called Hessian matrix.

H(f ) =




∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn
...

...
. . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n
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Trace

The trace of a matrix is the sum of the elements on the main
diagonal.

tr




1 2 3
4 5 6
7 8 9


 = 15
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Probability Theory
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Probability Theory

Resources:

I Moore/Siegel: Chapters 9-11

I Siegel on Youtube: Lectures 7-9

I Gill: Chapter 7
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Defintions

I Experiment: A probabilistic process that realizes an outcome
from a sample space.

I Sample Space: S (or Ω), a finite set, the collection of all
possible outcomes in an experiment

I Event: A ⊆ S , a subset from the sample space
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Axioms and Definition of Probability

Definition (Probability)

A probability distribution or simply a probability for event A, on a
sample space S , is a specification of numbers Pr(A) which satisfy
Axioms 1-3 (Kolmogorov probability axioms).

I Axiom 1 (Non-Negativity):

Pr(Ai ) ≥ 0 ∀i
I Axiom 2 (Normalization):

Pr(S) = 1.

I Axiom 3 (Additivity):

Pr(
∞⋃

i=1

Ai ) =
∞∑

i=1

Pr(Ai )

with all Ai are disjoint.
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Classical Probability of an Event

I Simple Sample Space: |S | = n with S = {s1, ..., sn}
I Event A ⊆ S

I Let |A| = k

Pr(A) = k/n

I to determine n and k it is often useful to consider counting
rules

I note: classical probability 6= empirical probability 6= subjective
probability
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Basic Theorems

Let A,B ⊆ S :

I Pr(∅) = 0

I Pr(Ac) = 1− Pr(A) where Ac is the complement set to A

I 0 ≤ Pr(A) ≤ 1

I A ⊂ B =⇒ Pr(A) ≤ Pr(B)

I Pr(
⋃n

i=1 Ai ) =
∑n

i=1 Pr(Ai ) with all Ai are disjoint

I Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B), where P(A ∩ B) is
the joint probability of A and B

Note: Pr(A ∩ B) is also denoted Pr(AB) or P(A,B)
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Probability Theory

Combinatorics
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Permutation and Combination

with replacement without replacement

Permutation
nk

(
n
k

)
k! = n!

(n−k)!(considering sequence)
Combination (

n+k−1
k

)
= (n+k−1)!

k!(n−1)!

(
n
k

)
= n!

k!(n−k)!(disregarding sequence)

Math for Political Science Probability Theory Combinatorics 153/ 186



Binomial Coefficient

I “n choose k”
(
n

k

)
=

n!

k!(n − k)!
∀ 0 < k ≤ n

I Example: How many ways can a voter select three candidates
from a field of seven?

(
7

3

)
=

7!

3!(7− 3)!
=

7!

3!× 4!
=

7× 6× 5

3× 2
= 35.
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Examples I

k = 2, S = {A,B,C} =⇒ n = 3

with replacement without replacement

Permutation |{AB,BA,BB,AC ,CA |{AB,BA,AC ,CA
(considering sequence) AA,BC ,CB,CC}| = 9 BC ,CB}| = 6
Combination |{AB,AC ,BC ,AA,BB |{AB,AC
(disregarding sequence) CC}| = 6 BC}| = 3
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Examples II

Let there be 4 train passengers waiting for tickets. How many
sequences are there to sell them their train tickets?
k = n = 4 =⇒

(n
k

)
k! = 24
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Probability Theory

Conditional Probability
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Definition

Definition (Conditional Probability)

Let A,B be two events with probability larger than zero. The
conditional probability of A given B is:
p(A|B) = p(A ∩ B)/p(B)

Interpretation: Given that B occurred, what is the probability for
A?
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Corollaries

I Multiplication Rule:
I p(A ∩ B) = p(A|B)p(B)

I General Product Rule:

I P

(⋂n
k=1 Ak

)
=
∏n

k=1 P

(
Ak |
⋂k−1

j=1 Aj

)

I Law of Total Probability
I Let A1, ...,Ak be disjoint events and

⋃k
i=1 Ai = S . For any

event B in S and as long as p(Aj) > 0∀j :
p(B) =

∑k
i=1 p(Ai )p(B|Ai ).

I Bayes’ Theorem
I p(A|B) = p(B|A)p(A)

p(B)
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Example I

Suppose you role a dice, but you can’t observe the outcome. What
is the probability that you get a 6? Does this probability change
when you have been told that the outcome was an even number?

P(roll a 6) = 1/6
P(roll a 6|even) = (1/6)/(1/2) = 1/3
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Example II
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Bayes’ Theorem

I first appeared in an essay by Thomas Bayes, 1763

I post-mortem published by Richard Price

I Laplace (1774,1781) provided (independently) most of the
relevant analysis

I foundation of Bayesian Statistics, formal modeling of learning,
philosophy of scientific progress, ...
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Bayes’ Theorem

p(A ∩ B) = p(A|B)p(B)
p(A ∩ B) = p(B|A)p(A)

p(A|B)p(B) = p(B|A)p(A)

p(A|B) = p(B|A)p(A)
p(B)
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Applied Bayes: Learning Example I

Example: Is a particular coin fair?

I H1, the event that a head is obtained after tossing

I hypothesis F, the coin is fair; hypothesis ¬F , the coin is not
fair (has two heads)

I suppose you have no reason to belief more in either of the two
hypothesis a-priori

I What is the probability of hypothesis F and ¬F after you
tossed the coin and you saw a head?
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Applied Bayes: Learning Example II

I prior probability about the fairness is p(F ) = p(¬F ) = 0.5

I if the coin is fair, p(H1|F ) = 0.5, if it’s unfair p(H1|¬F ) = 1

I the probability for p(H1) is given by the law of total probability

I posterior probability is given by Bayes Theorem:

p(F |H1) = p(F )p(H1|F )
p(F )p(H1|F )+p(¬F )p(H1|¬F )

= (0.5)(0.5)
(0.5)(0.5)+(0.5)(1)

= 1/3

(1)
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Applied Bayes: Learning Example III

I What is the posterior probability to see head when you toss
again (event H2)?

I now, the prior probability is: p(F ) = 1/3, p(¬F ) = 2/3

p(F |H2) = p(F )p(H2|F )
p(F )p(H2|F )+p(¬F )p(H2|¬F )

= (1/3)(0.5)
(1/3)(0.5)+(2/3)(1)

= 1/5

I for three heads in a row p(F |H3) = 1/9 ...

I this process is called Bayesian Updating
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Applied Bayes: Statistical Models

I let θ denote a parameter and y the data

I from Bayes’ Theorem:

p(θ|y) =
p(y |θ)p(θ)

p(y)

=
likelihood× prior

normalizing constant

∝ likelihood× prior

I solution to the general problem of inference

I learning about the probability (distribution) of a parameter
given the data

I impossible from a frequentist point of view
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Probability Theory

Probability Distributions
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Random Variable I

Definition (Random Variable)

Let Ω be the sample space for an experiment. A real-valued
function that is defined on Ω is called a random variable. The set
of values the variable might take is the distribution of the random
variable.
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Random Variable II

Definition (Discrete Random Variable)

We say that a random variable X is a discrete random variable
or that it has a discrete distribution, if X can take only a finite
number k of different values or, at most, an infinite sequence of
different values.

Definition (Continuous Random Variable)

We say that a random variable X is a continuous random
variable or that it has a continuous distribution, if X can take
an uncountably infinite number of possible values.

Note, that a random variable is usually denoted with a capital letter, while its
realizations are denoted with lowercase letters.
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Random Variable - Examples: Coin Toss

I Experiment: toss the coin 10 times.

I Sample space: all possible sequences of of 10 heads and/or
tails.

I Random variable: e.g. number of heads,
X = Number of Heads

Consider the sequence q = HHTTTHTTTH, then X (q) = 4.
Define another random variable as Y = 10− X , the number of
tails. Then, Y (q) = 6.
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Probability Mass Function

Definition (Probability Mass Function, p.m.f.)

For a discrete random variable X the probability mass function of
X is defined as a function f (·) such that for every real number x ,

f (x) = Pr(X = x) = Pr(s ∈ Ω : X (s) = x)

Remarks:

I if x 6∈ Ω =⇒ f (x) = 0

I if the sequence x1, x2, . . . includes all the possible values of X ,
then

∑∞
i=1 f (xi ) = 1.

I Pr(C ⊂ Ω) =
∑

xi∈C f (xi )
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Discrete Distributions

I Bernoulli: a single coin toss

I Binomial: ’successes’ of multiple coin tosses

I Poisson: counts

I ...
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Continuous Distributions

I Normal distribution

I Beta distribution

I Gamma distribution

I χ2 distribution

I t distribtion

I ...
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Example I

A p.m.f. defined as:

f (x) =





0.3 if x = 0
0.1 if x = 1
0.3 if x = 2
0.2 if x = 3
0.1 if x = 4
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Example II

Let λ ∈ R>0 (intensity), the Poisson p.m.f. is defined as

f (x ;λ) =

{
λxexp(−λ)

x! ∀x = 0, 1, 2, ...
0 otherwise
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Comments

I p.m.f. (as in c.d.f. / p.d.f.) have parameters which determine
the ”shape” of the distribution, e.g. the Poisson p.m.f. has
one parameter (λ)

I parameters can be included in the function definition, e.g.
f (x ;λ)

I another notation for the Poisson p.m.f. is X ∼ Pois(λ)
(similar notations exists for common other distributions)

I some authors use f (X = x) instead of f (x) only.

Math for Political Science Probability Theory Probability Distributions 177/ 186



Cumulative Distribution Function

Definition (Cumulative Distribution Function, c.d.f.)

The cumulative distribution function F (·) of a discrete or
continuous random variable X is the function

F (x) = Pr(X ≤ x), for−∞ < x <∞

Properties:

I F (x) is nondecreasing as x increases; i.e., if x1 < x2, then
F (x1) ≤ F (x2).

I limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

I c.d.f. is always continuous from the right, i.e. F (x) = F (x+)
at every point x .
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Example I

A c.d.f. defined as:

F (x) =





0.3 if x = 0
0.4 if x = 1
0.7 if x = 2
0.9 if x = 3
1.0 if x = 4
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Example II

Let λ ∈ R>0 (intensity), the Poisson c.d.f. is defined as

F (x) = exp(−λ)

|k|∑

i=0

λi

i !
,∀k ≤ 0
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Determining Probabilities from the c.d.f.

Let F (x−) = limy→x F (y)∀y < x and
F (x+) = limy→x F (y)∀y > x .

For any value:

I x , Pr(X > x) = 1− F (x)

I x1 and x2, such that x1 < x2,
Pr(x1 < X ≤ x2) = F (x2)− F (x1)

I x , Pr(X < x) = F (x−)

I x , Pr(X = x) = F (x)− F (x−)
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Probability Density Function, p.d.f.

Definition (Probability Density Function)

Let x be a continuous random variable. A p.d.f. is a nonnegative
function f (·), defined on the real line, such that:

f (x) = F (x)′

Remarks:

I f (x) ≥ 0, ∀x
I ∫ b

a f (x)dx = 1 where a, b are the bounds of the suppport for x
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Example I

The p.d.f. of a normal (or Gaussian) distribution is defined as

f (x ;µ, σ2) = 1
σ
√

2π
exp(− (x−µ)2

2σ2 ) where µ ∈ R (mean) and

σ2 ∈ R>0 (variance). For the standard normal (picture) µ = 0 and
σ2 = 1.
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Probability Theory

Properties of Distributions
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Expectation I

Definition (Expectation)

Let X be a discrete random variable with a p.m.f. f (·). The
expectation (also: expected value, mean) of X , denoted E (X ) is
a scalar defined as E (X ) =

∑
x xf (x). Similarly, if X is a

continuous random variable, the expectation is a scalar defined as
E (X ) =

∫ +∞
−∞ xf (x) dx .
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Variance

Definition (Variance)

Let X be a random variable with mean µ = E (X ). The variance of
X denoted by Var(x) is defined as: Var(x) = E

(
(X − µ)2

)
.

Properties:

I Var(aX + b) = a2Var(X )

I Var(X ) = E (X 2)− (E (X ))2

I Var(X + Y ) = Var(X ) + Var(Y ) iff (X ,Y ) are independent

Remark: For some distributions, the variance is infinite (e.g.
Pareto with α = 0.5).
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